楼主: 可人4
541 0

[量化金融] 统计套利均值回复利差的动态建模 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.1643
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-16 20:20:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
统计套利策略,如成对交易及其推广,依赖于构建具有一定可预测性的均值还原利差。高斯线性状态空间过程最近被提出作为这种扩展的模型,假设被观察的过程是一些隐藏状态的噪声实现。对未观察到的价差过程的实时估计可以揭示暂时的市场低效,然后可以利用这些低效来产生超额收益。在前人工作的基础上,我们采用状态空间框架来建模传播过程,并沿着三个不同的方向扩展该方法。首先,我们在模型参数中引入了时间依赖性,这使得在数据生成过程中能够快速地适应变化。其次,我们提供了一个在线估计算法,可以不断地实时运行。该算法计算速度快,特别适用于建立基于高频数据的激进交易策略,并可作为均值回归的监测装置。最后,我们的框架自然地提供了所有估计参数的信息不确定性度量。本文讨论了基于Monte Carlo模拟和历史股票数据的实验结果,包括两个交易所交易基金的协整关系。
---
英文标题:
《Dynamic modeling of mean-reverting spreads for statistical arbitrage》
---
作者:
Kostas Triantafyllopoulos and Giovanni Montana
---
最新提交年份:
2009
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance        数量金融学
二级分类:Portfolio Management        项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Statistics        统计学
二级分类:Applications        应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--

---
英文摘要:
  Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.
---
PDF链接:
https://arxiv.org/pdf/0808.1710
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:均值回复 统计套利 Applications Quantitative Optimization process parameters modeling 扩展 such

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 05:14