摘要翻译:
我们发现Buczynska和Wisniewski所研究的二元对称系统发生树模型的坐标代数的不变量子代数的表示。这些代数是与PL\'Ucker嵌入相关的两平面Grassmanian的权变型的整体截面环的toric退化,以及Cox-Nagata环的不变量环的toric退化。
---
英文标题:
《Presentations of Semigroup Algebras of Weighted Trees》
---
作者:
Christopher A. Manon
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
We find presentations for subalgebras of invariants of the coordinate algebras of binary symmetric models of phylogenetic trees studied by Buczynska and Wisniewski in \cite{BW}. These algebras arise as toric degenerations of rings of global sections of weight varieties of the Grassmanian of two planes associated to the Pl\"ucker embedding, and as toric degenerations of rings of invariants of Cox-Nagata rings.
---
PDF链接:
https://arxiv.org/pdf/0808.1320


雷达卡



京公网安备 11010802022788号







