摘要翻译:
网络形式的数据越来越多地出现在各种领域,然而对于稀疏网络,允许参数估计具有理想统计特性的统计模型仍然很少。为了解决这个问题,我们提出了稀疏的$\beta$-model(S$\beta$m),这是一个新的网络模型,它插值了著名的ERD\H{o}S-R\'Enyi模型和$\beta$-model,它为每个节点分配了一个不同的参数。通过对$\beta$-模型的重新参数化来区分全局和局部参数,我们的S$\beta$M可以通过要求某些局部参数为零来大幅降低$\beta$-模型的维数。当参数向量的支持度已知时,我们得到了S$\beta$m的极大似然估计的渐近分布。当支持度未知时,我们用$\ell_0$-惩罚构造了一个惩罚似然方法。值得注意的是,我们通过一个单调引理证明,通过给那些具有最大度的节点分配非零参数,可以克服由$\ell_0$-惩罚引起的看似组合的计算问题。我们进一步证明了一个$\beta$-min条件保证了我们的方法能够识别真实的模型,并为估计的参数提供超额风险界。仿真研究表明,该估计方法具有良好的有限样本性质。通过对一个小额信贷使用实例的分析,进一步说明了S$\beta$m的有用性。
---
英文标题:
《Analysis of Networks via the Sparse $\beta$-Model》
---
作者:
Mingli Chen, Kengo Kato, Chenlei Leng
---
最新提交年份:
2020
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
Data in the form of networks are increasingly available in a variety of areas, yet statistical models allowing for parameter estimates with desirable statistical properties for sparse networks remain scarce. To address this, we propose the Sparse $\beta$-Model (S$\beta$M), a new network model that interpolates the celebrated Erd\H{o}s-R\'enyi model and the $\beta$-model that assigns one different parameter to each node. By a novel reparameterization of the $\beta$-model to distinguish global and local parameters, our S$\beta$M can drastically reduce the dimensionality of the $\beta$-model by requiring some of the local parameters to be zero. We derive the asymptotic distribution of the maximum likelihood estimator of the S$\beta$M when the support of the parameter vector is known. When the support is unknown, we formulate a penalized likelihood approach with the $\ell_0$-penalty. Remarkably, we show via a monotonicity lemma that the seemingly combinatorial computational problem due to the $\ell_0$-penalty can be overcome by assigning nonzero parameters to those nodes with the largest degrees. We further show that a $\beta$-min condition guarantees our method to identify the true model and provide excess risk bounds for the estimated parameters. The estimation procedure enjoys good finite sample properties as shown by simulation studies. The usefulness of the S$\beta$M is further illustrated via the analysis of a microfinance take-up example.
---
PDF链接:
https://arxiv.org/pdf/1908.03152


雷达卡



京公网安备 11010802022788号







