摘要翻译:
设G是代数闭域上的代数群,作用于具有有限多个轨道的簇X。“交错轮”是X上G-等变相干轮的某些复形,它们似乎具有许多显著的性质。本文在交错轮范畴中构造了“标准”和“共标准”对象,并证明了该范畴具有足够的投射和注入。
---
英文标题:
《On the quasi-hereditary property for staggered sheaves》
---
作者:
Pramod N. Achar
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let G be an algebraic group over an algebraically closed field, acting on a variety X with finitely many orbits. "Staggered sheaves" are certain complexes of G-equivariant coherent sheaves on X that seem to possess many remarkable properties. In this paper, we construct "standard" and "costandard" objects in the category of staggered sheaves, and we prove that that category has enough projectives and injectives.
---
PDF链接:
https://arxiv.org/pdf/0809.1563


雷达卡



京公网安备 11010802022788号







