楼主: 能者818
438 0

[统计数据] 涨落的不可逆循环与熵产生 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.6240
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-22 08:05:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
研究了主方程描述的物理化学随机过程。本文研究了主方程和相应的Fokker-Planck方程的熵产生。对于主方程,Gaspard最近利用Kolmogorov-Sinai熵导出了熵产生的精确表达式({\em J.stat.phys.},\textbf{117}(2004),599;[勘误表;\textbf{126}(2006),1109])。虽然Gaspard的表达式是从随机考虑导出的,但应该注意,Gaspard的表达式与热力学表达式是一致的。对于相应的Fokker-Planck方程,利用Onsger-Machlup理论推导涨落定理过程中出现的详细的不平衡关系,用Tomita和Tomita({\em prog.theor.phys.},\textbf{51}(1974),1731)提出的{\em涨落的不可逆循环}来表示熵产。然而,对应的Fokker-Planck方程的这一表达式与主方程的熵产生的表达式不同。这种差异是由于主方程与相应的Fokker-Planck方程之间的差异,即前者处理离散事件,而后者是前者的近似。实际上,在后一个方程中,原来的离散事件被平滑掉了。为了克服这一困难,我们提出了{\em路径权重原理}。利用这一原理,修正后的Fokker-Planck方程的熵产率表达式与简单化学反应系统和扩散系统的主方程的熵产率表达式(即热力学表达式)相一致。
---
英文标题:
《Irreversible Circulation of Fluctuation and Entropy Production》
---
作者:
Hiroyuki Tomita and Mitsusada M. Sano
---
最新提交年份:
2008
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  Physical and chemical stochastic processes described by the master equation are investigated. In this paper, we examine the entropy production both for the master equation and for the corresponding Fokker-Planck equation. For the master equation, the exact expression of the entropy production was recently derived by Gaspard using the Kolmogorov-Sinai entropy ({\em J.Stat.Phys.}, \textbf{117} (2004), 599; [Errata; \textbf{126} (2006), 1109 ]). Although Gaspard's expression is derived from a stochastic consideration, it should be noted that Gaspard's expression conincides with the thermodynamical expression. For the corresponding Fokker-Planck equation, by using the detailed imbalance relation which appears in the derivation process of the fluctuation theorem through the Onsger-Machlup theory, the entropy production is expressed in terms of the {\em irreversible circulation of fluctuation}, which was proposed by Tomita and Tomita ({\em Prog.Theor.Phys.}, \textbf{51} (1974), 1731). However, this expression for the corresponding Fokker-Planck equation differs from that of the entropy production for the master equation. This discrepancy is due to the difference between the master equation and the corresponding Fokker-Planck equation, namely the former treats discrete events, but the latter equation is an approximation of the former one. In fact, in the latter equation, the original discrete events are smoothed out. To overcome this difficulty, we propose the {\em path weight principle}. By using this principle, the modified expression of the entropy production for the corresponding Fokker-Planck equation coincides with that of the master equation (i.e., the thermodynamical expression) for a simple chemical reaction system and a diffusion system.
---
PDF链接:
https://arxiv.org/pdf/711.2323
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:不可逆 IRREVERSIBLE Fluctuation circulation equilibrium 过程 差异 using 系统 Planck

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-5 14:25