摘要翻译:
在这一贡献中,我们证明了n-体孤立系统的适当定义的非平衡熵一般不是运动常数,它的变化是有界的,这个界由热力学熵即平衡熵决定。我们将非平衡熵定义为N个粒子约化分布函数集(N=0,........,N)的凸泛函,推广了Gibbs细粒度熵公式。另外,作为我们微观分析的结果,我们发现这个非平衡熵表现为一个自由熵振子。在对平衡区的研究中,我们得到了Fokker-Planck型的松弛方程,特别是对于单粒子分布函数。
---
英文标题:
《Statistical mechanical theory of an oscillating isolated system. The
relaxation to equilibrium》
---
作者:
A. Perez-Madrid
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
In this contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion in general and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n=0,......., N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
---
PDF链接:
https://arxiv.org/pdf/709.1214


雷达卡



京公网安备 11010802022788号







