摘要翻译:
研究了无限效用流上社会福利序的性质(即构造性与非构造性相对),以及它们的实值函数表示性。我们假定有限匿名性,并引入一个新的效率概念,我们称之为渐近密度-One Pareto。在单周期效用的可行集上,我们用易验证的条件刻画了满足上述性质的可表示的构造性社会福利序的存在性。
---
英文标题:
《On social welfare orders satisfying anonymity and asymptotic density-one
Pareto》
---
作者:
Ram Sewak Dubey, Giorgio Laguzzi, Francesco Ruscitti
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
---
英文摘要:
We study the nature (i.e., constructive as opposed to non-constructive) of social welfare orders on infinite utility streams, and their representability by means of real-valued functions. We assume finite anonymity and introduce a new efficiency concept we refer to as asymptotic density-one Pareto. We characterize the existence of representable and constructive social welfare orders (satisfying the above properties) in terms of easily verifiable conditions on the feasible set of one-period utilities.
---
PDF链接:
https://arxiv.org/pdf/2008.05879


雷达卡



京公网安备 11010802022788号







