摘要翻译:
本文对传统的回归事件研究方法提出了一种新的修正方案:基于自组织映射(SOM)的拓扑机器学习方法,并利用该方案对日本的一个重大市场事件进行了分析,发现该方法可以很容易地识别股票收益率异常的因素,并可以描述事件簇。我们还发现,传统的事件研究方法包含了一种经验分析机制,由于其机制,通常在事件簇的市场情况下,这种机制往往会导致偏差。我们解释了我们的新修正方案,并将其应用于日本市场的一个事件--2015年7月31日政府养老金投资基金(GPIF)的持有披露。
---
英文标题:
《Improving Regression-based Event Study Analysis Using a Topological
Machine-learning Method》
---
作者:
Takashi Yamashita and Ryozo Miura
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
英文摘要:
This paper introduces a new correction scheme to a conventional regression-based event study method: a topological machine-learning approach with a self-organizing map (SOM).We use this new scheme to analyze a major market event in Japan and find that the factors of abnormal stock returns can be easily can be easily identified and the event-cluster can be depicted.We also find that a conventional event study method involves an empirical analysis mechanism that tends to derive bias due to its mechanism, typically in an event-clustered market situation. We explain our new correction scheme and apply it to an event in the Japanese market --- the holding disclosure of the Government Pension Investment Fund (GPIF) on July 31, 2015.
---
PDF链接:
https://arxiv.org/pdf/1905.06536


雷达卡



京公网安备 11010802022788号







