摘要翻译:
给出了圣彼得堡悖论的一个解决方案。与标准分辨率相反,不需要实用工具。取而代之的是计算彩票的时间平均性能。最后的结果在数学上可以与Daniel Bernoulli的解析相同,后者使用对数效用,但使用概念上不同的论点导出。时间分辨率的优点是消除了任意效用函数。
---
英文标题:
《The time resolution of the St. Petersburg paradox》
---
作者:
Ole Peters
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
A resolution of the St. Petersburg paradox is presented. In contrast to the standard resolution, utility is not required. Instead, the time-average performance of the lottery is computed. The final result can be phrased mathematically identically to Daniel Bernoulli's resolution, which uses logarithmic utility, but is derived using a conceptually different argument. The advantage of the time resolution is the elimination of arbitrary utility functions.
---
PDF链接:
https://arxiv.org/pdf/1011.4404


雷达卡



京公网安备 11010802022788号







