|
辛切克·阿科斯(ω;pT)-Acos(ω)k≤p∞`=pT+1ka`k+k Acos(ω;pT)-Acos(ω;通过引理B.9和假设B.3(同样用sin代替cos)得到k∑-∑k=Op(t-1/2),由于k∑-∑k=Op(t-1/2)通过引理B.4得到z2πrt(ω)dω=Op(pT/t),利用h(·)的连续性和有界性,我们得到了ρ(pT)-ρ=z2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω))dω+z2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Asin(ω);pT)-Asin(ω))Dω+Z2πH(ω)g(Acos(ω),Asin(ω),∑)vec(∑-∑)Dω+Op(pT/t)=Z2πH(ω)g(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω;pT))Dω+Z2πH(ω)g(Acos(ω),Asin(ω),∑)vec(Asin(ω);pT)-Asin(ω;pT))dω+z2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω))dω(b.24)+z2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Asin(ω);pT)-Asin(ω))dω(b.25)+ζvec(∑-∑)+Op(pT/t)。我们现在对非参数偏置项(b.24)进行了约束;(b.25)的论点类似,注意h(·)是有界的,和z2πkg(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω))k dω≤z2πkg(Acos(ω),Asin(ω),∑)k dω×supω∈[0,2π]kacos(ω;pT)-Acos(ω)k≤z2πkg(Acos(ω),Asin(ω),∑)k dω×∞x`=pT+1ka`k=o(t-1/2),通过假设B.3。我们还使用了假设B.2在L(0,2π)中包含ω7→kg(Acos(ω),Asin(ω),∑)kis,暗示这个函数是可积的。因此,项(b.24)-(b.25)是每个o(t-1/2)。为了完成证明,观察2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω;pT))Dω+Z2πH(ω)g(Acos(ω),Asin(ω),∑)vec(Asin(ω);pT)-Asin(ω;pT))dω=z2πh(ω)g(Acos(ω),Asin(ω),∑)ptx`=1vec(a`-a\')cos(ω)dω+z2πh(ω)g(Acos(ω),Asin(ω),∑)ptx`=1vec(a`-a\')sin(ω\')dω=ptx`=1vec`Tvec(a`-a\')dω=ptx`=1vec`Tvec(a`-a\')dω=ptx`=1vec`Tvec(β(pT)-β(pT))+ζvec(∑-∑)+o(t-1/2)+Op(pT/T)。以上余项均为1/2)通过假设B.3.B.9.15对命题B.4的证明,如果我们能证明kütki是渐近有界的,则命题立即从引理B.8和B.11得到。设gj,i(·,·,·)表示gj(·,·,·)的第i个元素,j=1,2,i=1,2,。...西北。设Msupω∈[0,2π]h(ω)<∞。thenk'Atk=nwxi=1ptx`=1z2πh(ω)g1,i(Acos(ω),Asin(ω),∑)cos(ω)+g2,i(Acos(ω),Asin(ω),∑)sin(ω)dω≤2mnwxi=1ptx`=1z2πg1,i(Acos(ω),Asin(ω),∑)cos(ω)dω+z2πg2,i(Acos(ω),Asin(ω),∑)sin(ω)dω。sumptx`=12πz2πg1,i(Acos(ω),Asin(ω),∑)sin(ω)dω),∑)cos(ω`)dω(b.26)等于函数ω7→g1,i(Acos(ω),Asin(ω),∑)在正交函数空间{ω7→cos(ω`)}1≤`≤pt上投影的L(0,2π)范数。Bessel不等式指出(B.26)是以函数ω7→G1,i(Acos(ω),Asin(ω),∑)的平方L(0,2π)范数为界的。类似地,我们可以用g2,i(·,·,·)代替g1,i(·,·,·)和用sin(ω`)代替cos(ω`)来约束表达式(B.26)。因此,kütk≤8πmpnwi=1kg1,i(Acos(·),Asin(·),∑)kL(0,2π)+kg2,i(Acos(·),Asin(·),∑)kL(0,2π),用明显的符号表示L范数。这些范数是由假设B.2.B.9.16命题B.5的证明而成的,我们从证明küt-'Atk=op(1)和kζ(pT)-ζk=op(1)开始。根据引理B.10和假设B.2中的两次连续可测性,存在一个常数C<∞,使得当概率接近1时,kgj(Acos(ω;pT),Asin(ω;pT),∑)-gj(Acos(ω),Asin(ω),∑)k≤ck Acos(ω;pT)-Acos(ω)k+k Asin(ω;pT)-Asin(ω)k+k∑(pT)-∑k,对于j=1,2,3。根据引理B.4和I.I.D.中心极限定理,我们有k∑(pT)-∑k=op(t-1/2)。例如,利用引理B.9,我们得到:ptx`=1z2πh(ω)hg(Acos(ω),Asin(ω),∑)-g(Acos(ω),Asin(ω),∑)icos(ω`)dω≤~cptsupω∈[0,2π]k Acos(ω;pT)-Acos(ω)k+k Asin(ω;pT)-Asin(ω)k+k∑-∑(pT)k=Op((pT/t)1/2)=Op(1),其中~c是某个常数。这种类型的计算意味着kct^avtk=op(1)和kζ(pT)-ζk=op(1)。我们现在一次一个地处理σψ(pT)中这两项的一致性。
|