研究了在凸约束条件下,终端财富和消费的鲁棒最大化问题。通过研究相关的二次倒向随机微分方程(简称BSDE),证明了消费-投资策略的存在唯一性。我们用对偶方法刻画了最优控制,并导出了动态极大值原理。
---
英文标题:
《Maximization of recursive utilities under convex portfolio constraints》
---
作者:
Anis Matoussi, Hanen Mezghani and Mohamed Mnif
---
最新提交年份:
2014
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
英文摘要:
We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption-investment strategy by studying the associated quadratic backward stochastic differential equation (BSDE in short). We characterize the optimal control by using the duality method and deriving a dynamic maximum principle.
---
PDF下载:
-->
English_Paper.pdf
(367.41 KB)


雷达卡



京公网安备 11010802022788号







