|
如果集合{t′∈[0,T]:X(T′,ω′)≤ 0}不是空的,命题5.1(1)意味着limn→∞↑ n(ω′)=τ(ω′),然而,n(ω′)<τ(ω′)对于任意n∈ 然后我们可以推断出limn→∞[0,n(ω′)(t′)=[0,τ(ω′)(t′),t′∈[0,T],路径U·(ω′)的连续性意味着limn→∞Ynt′(ω′)=limn→∞{t\'\'≤n(ω′)L(t′,ω′)+1{t′>n(ω′)U(n(ω′,ω′)= 1{t′<τ(ω′)}L(t′,ω′)+1{t′≥τ(ω′)U(τ(ω′),ω′)=Y(τ(ω′)∧ t′,ω′)=cYt′(ω′),t′∈[0,T]。另一方面,如果集合{t′∈ [0,T]:X(T′,ω′)≤ 0}为空,路径X·(ω′)的连续性意味着inft′∈[0,T]X(T′,ω′)>0。足够大的∈ N、 布景t′∈[0,T]:X(T′,ω′)≤对数(n+2)+十、-1.-1.-1.也是空的,因此T=τn(ω′)=n(ω′)=τ(ω′)由命题5.1(1)确定。然后(A2)表明,对于任何t′∈[0,T]limn→∞Ynt′(ω′)=limn→∞{t\'\'≤n(ω′)L(t′,ω′)+1{t′>n(ω′)U(n(ω′,ω′)=1{t′≤T}L(T′,ω′)=1{T′<T}L(T′,ω′)+1{T′=T}U(T,ω′)=1{T′<τ(ω′)L(T′,ω′)+1{T′≥τ(ω′)U(τ(ω′),ω′)=cYt′(ω′)。(6.73)的证明:设ω∈Ohm. 从那时起l,lt(ω)=Lt(ω)除以[0,l(ω)+2-l][0, n) ,一个hasbζαi,l∧n=infT∈[0, n) :Zl,lT≤通过l,lt+1/i+1/α∧n=infT∈[0, n) :Zl,lT≤Lt+1/i+1/α∧n=ζαi,l∧n、 (A.16)非线性期望下随机到期的最优停止34If Zmj,mjt(ω)=Lt(ω)对于某些t∈0, n(ω), 应用(6.70),k=MJ,k=l 分别表示zt(ω)≤Zmj,mjt(ω)+εmj≤Lt(ω)+εl<Lt(ω)+2i+α,因此Zl,lt(ω)≤Zt(ω)+εl<Lt(ω)+i+α。所以inf{t∈[0, n(ω)):Zl,lt(ω)≤Lt(ω)+1/i+1/α}≤inf{t∈[0, n(ω)):Zmj,mjt(ω)=Lt(ω)}。AsbYmj,mjt(ω)=Lt(ω)除以[0,n(ω)),可以得出ζαi,l(ω)∧n(ω)=infT∈[0, n(ω)):Zl,lt(ω)≤Lt(ω)+1/i+1/α∧n(ω)≤inf{t∈[0, n(ω)):Zmj,mjt(ω)=Lt(ω)}∧n(ω)=inf{t∈[0, n(ω):Zmj,mjt(ω)=bYmj,mjt(ω)}∧n(ω)=νmj(ω)∧n(ω)。另一方面,如果T∈ [0, n(ω):Zmj,mjt(ω)=Lt(ω)如果是空的,我们可以推断出νmj(ω)≥ n(ω)。然后νmj(ω)∧n(ω)=n(ω)≥我,l(ω)∧n(ω)自动保持不变。
|