|
对于X和X,我们以同样的方式进行。例如,考虑f(x)=x,因此等式(19)产生G(x)=bPi+β-Pix2x+Pdj=1ΣB+Bxj1xj2.对于f(x)=xx,其中(二十)x=x,(二十)x=x和(二十)xx=1,(19)并且S(X(t))和∑是对角矩阵,这一事实导致G(xx)=bP+βPxx+bP+βPxx+[∑S]·1+[∑S]·1。有了xx,我们以同样的方式进行。结果是5:10,1:10=∑B2bP+∑Bx∑Bx∑Bx2βP2βP2βP00 0。BP0βPβP+βPβPβPβP00。BP0BPβPβPβP+βP0βPβP0。∑B∑Bx2bP+∑Bx∑Bx0 2βP02βP2βP00。0 bPbP0βPβPβPβP+βPβP。∑B∑Bx∑Bx2bP+∑Bx0 0 2βP0 2βP2βP0。.对于k=3,我们得到= 10=删除。在考虑第11到20行之前。基本元素是x=x、 xx,xx,xx,xxx,xx,x,xx,xx,xx,x. 然后,A11:20,1:10=bxxx0 0 0 0 0 0 0 0 bbbbbbx0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 bbx0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bx0 3∑Bx3bP+3∑Bx.其中Sii(X(t))=Bi+(Bxi)′X(t)和Sij(X(t))=0,i,j=1,d、 11:20,11:20=3βP3βP3βP000。βP2βP+βPβP2βP2βP000。βPβP2βP+βp02β2β0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0。0 2βP0βP+2βP2βP0βPβP000。0βPβPβPβP+βP+βPβP0βPβP0。0 0 2βP0 2βPβP+2βP0 0βPβP0。03βP003βP3βP000。0 0 0βP2βP0βP2βP+βP2βP0。0 0 0 0 2βPβP0 2βP2βP+βPβP0。0 0 0 0 3βP0 0 3βP3βP0。.最后但并非最不重要的一点是,当k=4时,我们有d=15个基本元素=x、 xx,xx,xx,xxx,xx,xx,xxx,xxx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx.
|