|
然后M,Mj和Mj,分别是以下的d×2,d×3和d×4矩阵:=ee2ee2:d·············, 对于d=3,它是M=1 11 21 32 22 33 3, (55)它的尺寸不是故意规定的,因为它会有所不同,并且会从上下文中清晰可见。Mj=(M,je)和dmj,l=(Mj,le)=(M,je,le),(56)其中e是维数为d×1的向量。因此,对于t>sE(XtiXsjXtl)=E(E(XtiXtl | Xs)Xsj)=exp(t- (s)A) k,1E(Xsj)+exp(t- (s)A) k,2:1+dE(xsj)+exp(t- (s)A) k,2+d:2+d+dE(xsj)=exp(t- (s)A) k,1E(Xtj)+exp(t- (s)A) k,2:1+dEXg([~e,je]),t+ exp((t- (s)A) k,2+d:2+d+dEXg(Mj),t, (57)式中k=1+d+g(i,l)。因此,(i,j)元素i,j=1,d、 (47)中的矩阵是E(XtX′s)ψ′Xtij=dXl=1ψlE(XtiXsjXtl),其中E(XtiXsjXtl)由(57)给出。那就让我们来吧ψ′Xt(ψ′Xs)= ψ′E(Xtψ′XsX′s)ψ=ψ′E(XtX′s)(ψ′Xs)ψ,(58)式中(XtX′s)(ψ′Xs)=Xt1Xs1Xt1Xs2··Xt1XsdXt2Xs1Xt2Xs2··Xt2Xsd··XtdXs1XtdXs2··XtdXsddXi=lψlXsl=dXi=lψlXT1XS1XSLXT1XS2XSSL···XT1XSDXSLXT2XSS1XSLXT2XS2XS2XSL···XT2XSSDXSL··XtdXs1XslXtdXs2Xsl··XtdXsdXsl··XtdXsdXsl. (59)对于表达式(59),需要知道E(XtiXsjXsl),其中i,j,l∈ {1,…,d}。因此,对于t>sE(XtiXsjXsl)=E(E(Xti | Xs)XsjXsl)(60)=exp(t- (s)A) i+1,1E(XsjXsl)+exp(t- (s)A) i+1,2:1+dE(xsjxsl)=exp(t- (s)A) i+1,1EXg(j,l),t+ exp((t- (s)A) i+1,2:1+dEXg([e,je,le]),t.(i,j)元素i,j=1,d、 (59)中矩阵的E(XtX′s)ψ′Xsij=dXl=1ψlE(XtiXsjXsl),其中E(XtiXsjXsl)由(61)给出。
|