|
Brunnermeier&Pedersen(2005)中也提到,如果不限制代理商库存的规模,市场将变得有效。以上结果证明了高交易频率的积极作用。然而,它们基于这样一个假设,即市场不会随着频率的增加而退化。在第3节中,我们看到,只有当代理人是市场中立的(即α=0),市场才不会退化。如果违反了这一条件,且频率N足够高,则市场不承认任何非退化均衡(即,不存在安全机制,流动性危机永远不会发生)。事实证明,这个结论在本文考虑的一般情况下仍然成立。定理4.2。假设4.1,4.2,4.3,4.4,4.5,4.6,4.7成立。考虑一组给定时间间隔[0,T]的均匀分区,其直径为{t=t/N>0},包含任意小的t、 以及离散时间模型的相关家族。假设每一个这样的模型都允许一个非简并的LTC平衡,具有相同的支持度a。那么,对于所有α∈~A,我们有:~pis,Pα下的鞅。上述定理表明,如果交易频率N足够大,即使信号α非常小(但非零),市场也会退化。因此,正如第3节末尾所讨论的,这种退化不能归因于任何根本原因,我们称之为内生流动性危机。让我们为定理4.2的陈述成立的原因提供一个直观的(启发性的)论证。首先,假设所有多头经纪人(即持有正库存的经纪人)都看好资产(即持有正漂移)。
|