《Correction to Black-Scholes formula due to fractional stochastic
volatility》
---
作者:
Josselin Garnier and Knut Solna
---
最新提交年份:
2017
---
英文摘要:
Empirical studies show that the volatility may exhibit correlations that decay as a fractional power of the time offset. The paper presents a rigorous analysis for the case when the stationary stochastic volatility model is constructed in terms of a fractional Ornstein Uhlenbeck process to have such correlations. It is shown how the associated implied volatility has a term structure that is a function of maturity to a fractional power.
---
中文摘要:
实证研究表明,波动率可能表现出相关性,其衰减为时间偏移的分数幂。本文对平稳随机波动率模型由分数阶Ornstein-Uhlenbeck过程构造而成的情况进行了严格的分析。本文展示了相关的隐含波动率是如何具有期限结构的,期限结构是到期日到分数次幂的函数。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->
Correction_to_Black-Scholes_formula_due_to_fractional_stochastic_volatility.pdf
(282.56 KB)


雷达卡



京公网安备 11010802022788号







