|
在结束时间,使用通常的SWIFT公式,然后算法在所有后续时间步骤中切换到快速版本,请参见算法2。beginfor s=1- J至J do^yP(2-ms)=<g,ДJ,s>,^zP(2-ms)=<σDxg,ДJ,s>和^fP(2-ms)=<f(T,·,g(·),σDx(·)),ДJ,r>。endCompute(E-物料需求计划-1[ДJ,k(XtP)])r,k=1-JJand(E)-物料需求计划-1[ДJ,k(XtP)ωP])r,k=1-JJwith(3.2)和(3.3)。对于p=p-1对1文件计算函数(^zp(2-ms))s=1-JJwith(3.4)。计算函数(^yp(2-ms))s=1-JJwith(3.8)和Picard迭代(如有必要)。计算函数(f(tp,2-ms,^yp(2-ms),^zp(2-ms)))s=1-JJ、 计算(E-物料需求计划-1[ДJ,k(Xtp)])r,k=1-JJand(E)-物料需求计划-1[ДJ,k(Xtp)ωp])r,k=1-J如果(X)的分布tp- 十、tp-1) 与时间相关。endCompute^z(x) 和^y(x) 。endAlgorithm 2:混合快速SWIFT方法。4.3 Picard迭代错误当θ6=0时,必须使用以下等式执行Picard迭代:y=tθf(tp,x,y,^zp(x))+^h(tp,x),以找到固定点y。众所周知,如果函数tθf是y的收缩映射,即|tθf(tp,x,y,^zp(x))- tθf(tp,x,y,^zp(x))|≤ ξ| y- y |,带ξ∈ [0,1)对于所有x∈ (-2.-mJ,2-mJ]。当驱动程序功能为y中的IPSCHITZ且t足够小。我们采用以下符号:^y,IP(x):=g(x);^y,0p(x):=JJXr=1-J^y,Ip+1rmR(JXk=1ei2mCkxΦ(tp,x,2mCk)e-iCkr);^y,i+1p(x):=tθf(tp,x,^y,ip(x),^zp(x))+^h(tp,x),对于p=0,P-1且i=0,我-1、很明显,^y,当θ=0和I时,Ip(x)=^h(tp,x)≥ 1,这是显式方案。上述符号与第3.4节中的符号一致,但我们应替换^yp+1带^y,公式(3.5)中的Ip+1。
|