《Improving Stock Market Prediction via Heterogeneous Information Fusion》
---
作者:
Xi Zhang, Yunjia Zhang, Senzhang Wang, Yuntao Yao, Binxing Fang,
Philip S. Yu
---
最新提交年份:
2018
---
英文摘要:
Traditional stock market prediction approaches commonly utilize the historical price-related data of the stocks to forecast their future trends. As the Web information grows, recently some works try to explore financial news to improve the prediction. Effective indicators, e.g., the events related to the stocks and the people\'s sentiments towards the market and stocks, have been proved to play important roles in the stocks\' volatility, and are extracted to feed into the prediction models for improving the prediction accuracy. However, a major limitation of previous methods is that the indicators are obtained from only a single source whose reliability might be low, or from several data sources but their interactions and correlations among the multi-sourced data are largely ignored. In this work, we extract the events from Web news and the users\' sentiments from social media, and investigate their joint impacts on the stock price movements via a coupled matrix and tensor factorization framework. Specifically, a tensor is firstly constructed to fuse heterogeneous data and capture the intrinsic relations among the events and the investors\' sentiments. Due to the sparsity of the tensor, two auxiliary matrices, the stock quantitative feature matrix and the stock correlation matrix, are constructed and incorporated to assist the tensor decomposition. The intuition behind is that stocks that are highly correlated with each other tend to be affected by the same event. Thus, instead of conducting each stock prediction task separately and independently, we predict multiple correlated stocks simultaneously through their commonalities, which are enabled via sharing the collaboratively factorized low rank matrices between matrices and the tensor. Evaluations on the China A-share stock data and the HK stock data in the year 2015 demonstrate the effectiveness of the proposed model.
---
中文摘要:
传统的股市预测方法通常利用股票的历史价格相关数据来预测其未来趋势。随着网络信息的增长,最近一些作品试图探索财经新闻以提高预测能力。事实证明,与股票相关的事件以及人们对市场和股票的情绪等有效指标在股票的波动性中起着重要作用,并将其提取到预测模型中,以提高预测精度。然而,以往方法的一个主要限制是,指标仅从可靠性可能较低的单一来源获得,或从多个数据来源获得,但它们在多源数据之间的相互作用和相关性在很大程度上被忽略。在这项工作中,我们从网络新闻中提取事件,从社交媒体中提取用户的情绪,并通过耦合矩阵和张量因子分解框架研究它们对股价运动的共同影响。具体来说,首先构造一个张量来融合异构数据,并捕捉事件与投资者情绪之间的内在关系。由于张量的稀疏性,构造并合并了两个辅助矩阵,即股票数量特征矩阵和股票相关性矩阵,以辅助张量分解。背后的直觉是,相互高度相关的股票往往会受到同一事件的影响。因此,我们没有单独独立地执行每个股票预测任务,而是通过它们的共性同时预测多个相关股票,这些共性是通过在矩阵和张量之间共享协作分解的低秩矩阵实现的。对2015年中国A股数据和香港股市数据的评估证明了该模型的有效性。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->
Improving_Stock_Market_Prediction_via_Heterogeneous_Information_Fusion.pdf
(829.88 KB)


雷达卡



京公网安备 11010802022788号







