《Aggregating multiple types of complex data in stock market prediction: A
model-independent framework》
---
作者:
Huiwen Wang, Shan Lu and Jichang Zhao
---
最新提交年份:
2018
---
英文摘要:
The increasing richness in volume, and especially types of data in the financial domain provides unprecedented opportunities to understand the stock market more comprehensively and makes the price prediction more accurate than before. However, they also bring challenges to classic statistic approaches since those models might be constrained to a certain type of data. Aiming at aggregating differently sourced information and offering type-free capability to existing models, a framework for predicting stock market of scenarios with mixed data, including scalar data, compositional data (pie-like) and functional data (curve-like), is established. The presented framework is model-independent, as it serves like an interface to multiple types of data and can be combined with various prediction models. And it is proved to be effective through numerical simulations. Regarding to price prediction, we incorporate the trading volume (scalar data), intraday return series (functional data), and investors\' emotions from social media (compositional data) through the framework to competently forecast whether the market goes up or down at opening in the next day. The strong explanatory power of the framework is further demonstrated. Specifically, it is found that the intraday returns impact the following opening prices differently between bearish market and bullish market. And it is not at the beginning of the bearish market but the subsequent period in which the investors\' \"fear\" comes to be indicative. The framework would help extend existing prediction models easily to scenarios with multiple types of data and shed light on a more systemic understanding of the stock market.
---
中文摘要:
成交量的日益丰富,尤其是金融领域的数据类型,为更全面地了解股市提供了前所未有的机会,并使价格预测比以前更加准确。然而,它们也给传统的统计方法带来了挑战,因为这些模型可能会被限制在某种类型的数据中。为了聚合不同来源的信息并为现有模型提供无类型功能,建立了一个混合数据情景下的股市预测框架,包括标量数据、组合数据(饼状)和函数数据(曲线状)。所提出的框架与模型无关,因为它就像是多种类型数据的接口,可以与各种预测模型相结合。通过数值模拟验证了该方法的有效性。关于价格预测,我们通过该框架整合了交易量(标量数据)、日内收益率序列(功能数据)和来自社交媒体的投资者情绪(组合数据),以有效预测市场在第二天开盘时是上涨还是下跌。进一步证明了该框架的强大解释力。具体而言,我们发现,在熊市和牛市之间,日内收益率对以下开盘价格的影响不同。而且,投资者的“恐惧”并不是在熊市开始时显现出来的,而是在随后的一段时间里显现出来的。该框架将有助于将现有预测模型轻松扩展到具有多种数据类型的情景,并有助于更系统地了解股市。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->
Aggregating_multiple_types_of_complex_data_in_stock_market_prediction:_A_model-i.pdf
(781.18 KB)


雷达卡



京公网安备 11010802022788号







