英文标题:
《A bootstrap test to detect prominent Granger-causalities across
frequencies》
---
作者:
Matteo Farn\\\'e and Angela Montanari
---
最新提交年份:
2018
---
英文摘要:
Granger-causality in the frequency domain is an emerging tool to analyze the causal relationship between two time series. We propose a bootstrap test on unconditional and conditional Granger-causality spectra, as well as on their difference, to catch particularly prominent causality cycles in relative terms. In particular, we consider a stochastic process derived applying independently the stationary bootstrap to the original series. Our null hypothesis is that each causality or causality difference is equal to the median across frequencies computed on that process. In this way, we are able to disambiguate causalities which depart significantly from the median one obtained ignoring the causality structure. Our test shows power one as the process tends to non-stationarity, thus being more conservative than parametric alternatives. As an example, we infer about the relationship between money stock and GDP in the Euro Area via our approach, considering inflation, unemployment and interest rates as conditioning variables. We point out that during the period 1999-2017 the money stock aggregate M1 had a significant impact on economic output at all frequencies, while the opposite relationship is significant only at high frequencies.
---
中文摘要:
频域格兰杰因果关系是分析两个时间序列之间因果关系的新兴工具。我们建议对无条件和条件格兰杰因果关系谱以及它们的差异进行bootstrap测试,以捕获相对而言特别显著的因果循环。特别地,我们考虑了一个随机过程,该过程独立地将平稳自举应用于原始序列。我们的无效假设是,每个因果关系或因果关系差异等于在该过程中计算的频率中值。通过这种方式,我们能够消除因果关系的歧义,这些因果关系与忽略因果关系结构而获得的中值显著不同。我们的测试表明,当过程趋于非平稳时,功率为1,因此比参数选择更加保守。例如,我们通过我们的方法推断欧元区货币存量与GDP之间的关系,将通货膨胀、失业和利率视为条件变量。我们指出,在1999-2017年期间,货币存量总量M1在所有频率下对经济产出都有显著影响,而相反的关系仅在高频率下显著。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







