英文标题:
《A derivation of the Black-Scholes option pricing model using a central
limit theorem argument》
---
作者:
Rajeshwari Majumdar, Phanuel Mariano, Lowen Peng and Anthony Sisti
---
最新提交年份:
2018
---
英文摘要:
The Black-Scholes model (sometimes known as the Black-Scholes-Merton model) gives a theoretical estimate for the price of European options. The price evolution under this model is described by the Black-Scholes formula, one of the most well-known formulas in mathematical finance. For their discovery, Merton and Scholes have been awarded the 1997 Nobel prize in Economics. The standard method of deriving the Black-Scholes European call option pricing formula involves stochastic differential equations. This approach is out of reach for most students learning the model for the first time. We provide an alternate derivation using the Lindeberg-Feller central limit theorem under suitable assumptions. Our approach is elementary and can be understood by undergraduates taking a standard undergraduate course in probability.
---
中文摘要:
Black-Scholes模型(有时称为Black-Scholes-Merton模型)给出了欧式期权价格的理论估计。该模型下的价格演变由Black-Scholes公式描述,Black-Scholes公式是金融数学中最著名的公式之一。由于他们的发现,默顿和斯科尔斯获得了1997年诺贝尔经济学奖。推导Black-Scholes欧式看涨期权定价公式的标准方法涉及随机微分方程。这种方法对于大多数第一次学习该模型的学生来说是遥不可及的。在适当的假设下,我们使用Lindeberg-Feller中心极限定理提供了另一种推导方法。我们的方法是基本的,在概率方面修读标准本科课程的本科生可以理解。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







