英文标题:
《A New Nonparametric Estimate of the Risk-Neutral Density with
Applications to Variance Swaps》
---
作者:
Liyuan Jiang, Shuang Zhou, Keren Li, Fangfang Wang and Jie Yang
---
最新提交年份:
2019
---
英文摘要:
We develop a new nonparametric approach for estimating the risk-neutral density of asset prices and reformulate its estimation into a double-constrained optimization problem. We evaluate our approach using the S\\&P 500 market option prices from 1996 to 2015. A comprehensive cross-validation study shows that our approach outperforms the existing nonparametric quartic B-spline and cubic spline methods, as well as the parametric method based on the Normal Inverse Gaussian distribution. As an application, we use the proposed density estimator to price long-term variance swaps, and the model-implied prices match reasonably well with those of the variance future downloaded from the CBOE website.
---
中文摘要:
我们发展了一种新的非参数方法来估计资产价格的风险中性密度,并将其估计转化为一个双约束优化问题。我们使用1996年至2015年标准普尔500指数市场期权价格评估我们的方法。综合交叉验证研究表明,我们的方法优于现有的非参数四次B样条和三次样条方法,以及基于正态逆高斯分布的参数方法。作为一个应用,我们使用建议的密度估计器为长期方差互换定价,模型隐含价格与从CBOE网站下载的方差未来价格相当匹配。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







