英文标题:
《Nash equilibrium of partially asymmetric three-players zero-sum game
with two strategic variables》
---
作者:
Atsuhiro Satoh and Yasuhito Tanaka
---
最新提交年份:
2018
---
英文摘要:
We consider a partially asymmetric three-players zero-sum game with two strategic variables. Two players (A and B) have the same payoff functions, and Player C does not. Two strategic variables are $t_i$\'s and $s_i$\'s for $i=A, B, C$. Mainly we will show the following results. 1. The equilibrium when all players choose $t_i$\'s is equivalent to the equilibrium when Players A and B choose $t_i$\'s and Player C chooses $s_C$ as their strategic variables. 2. The equilibrium when all players choose $s_i$\'s is equivalent to the equilibrium when Players A and B choose $s_i$\'s and Player C chooses $t_C$ as their strategic variables. The equilibrium when all players choose $t_i$\'s and the equilibrium when all players choose $s_i$\'s are not equivalent although they are equivalent in a symmetric game in which all players have the same payoff functions.
---
中文摘要:
我们考虑一个具有两个战略变量的部分不对称三人零和博弈。两个玩家(A和B)具有相同的支付函数,而玩家C则没有。两个战略变量是$t\\U i$\'s和$s\\U i$\'s,其中$i=A、B、C$。我们将主要显示以下结果。1、当所有参与者选择$t\\i$\'s时的均衡相当于当参与者A和B选择$t\\i$\'s且参与者C选择$s\\U C$作为其战略变量时的均衡。2、当所有参与者选择$s\\i$\'s时的均衡相当于当参与者A和B选择$s\\i$\'s且参与者C选择$t\\U C$作为其战略变量时的均衡。所有参与者选择$t\\U i$\'s时的均衡和所有参与者选择$s\\U i$\'s时的均衡并不等价,尽管它们在所有参与者具有相同支付函数的对称博弈中是等价的。
---
分类信息:
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







