|
(84)关于概率空间{Ohm-× Ohm+, F-×F+,P-×P+},所有有界随机值α(ω,ω)满足上述条件。在上引入所有措施{Ohm, F} 度量ρ(Q,Q)=∞Xi=1 | Q(ωi)- Q(ωi)|。(85)引理7。最小度量集(85)的闭包包含度量集suω,ω(A)=χA(ω)η+(ω)η-(ω) +η+(ω)+χA(ω)η-(ω)η-(ω) +η+(ω)(86)表示ω∈ Ohm-, ω∈ Ohm+, A.∈ F、 对于任意有界随机值F(ω),点集EQf,Q的闭包∈ M、 度量ρ(x,y)=x- y |,x,y∈ R、 包含点seuω,ωf,(ω,ω)∈ Ohm-× Ohm+.证据L让我们选择由αε(ω,ω)定义的等效度量Qε集,0<ε<1,并由定律给出:αε(ω,ω)=1- εP(ω)P(ω),ω∈ Ohm-, ω∈ Ohm+,αε(ω,ω)=εαε(ω,ω),αε(ω,ω)=Pω6=ωPω=ωP(ω)P(ω),(ω,ω)6=(ω,ω),ω∈ Ohm-, ω∈ Ohm+.很明显,αε(ω,ω)>0,(ω,ω)∈ Ohm-× Ohm+, 对于每1>ε>0,a满足质量x(ω,ω)∈Ohm-×Ohm+αε(ω,ω)P(ω)P(ω)=1。(87)那么,Qε(ω)=Xω∈Ohm+αε(ω, ω)η+(ω)η-(ω) +η+(ω)P(ω)P(ω),(88)Qε(ω)=Xω∈Ohm-αε(ω, ω)η-(ω)η-(ω) +η+(ω)P(ω)P(ω)。(89)Qε(ω)=(1)- ε)η+(ω)η-(ω) +η+(ω)+εXω∈Ohm+,ω6=ωαε(ω, ω)η+(ω)η-(ω) +η+(ω)P(ω)P(ω),(90)Qε(ω)=(1- ε)η+(ω)η-(ω) +η+(ω)+εXω∈Ohm-,ω6=ωαε(ω, ω)η-(ω)η-(ω) +η+(ω)P(ω)P(ω)。(91)如果ω6=ω,ω6=ω,则qε(ω)=εXω∈Ohm+αε(ω, ω)η+(ω)η-(ω) +η+(ω)P(ω)P(ω),(92)Qε(ω)=εXω∈Ohm-αε(ω, ω)η-(ω)η-(ω) +η+(ω)P(ω)P(ω)。(93)测量值Qε和uω,ω之间的距离由公式ρ(Qε,uω,ω)=ε+εXω给出∈Ohm+,ω6=ωαε(ω, ω)η+(ω)η-(ω) +η+(ω)P(ω)P(ω)+εXω∈Ohm-,ω6=ωαε(ω, ω)η-(ω)η-(ω) +η+(ω)P(ω)P(ω)+εXω∈Ohm-,ω6=ωXω∈Ohm+αε(ω, ω)η+(ω)η-(ω) +η+(ω)P(ω)P(ω)+εXω∈Ohm+,ω6=ωXω∈Ohm-αε(ω, ω)η-(ω)η-(ω) +η+(ω)P(ω)P(ω)。(94)SinceXω∈Ohm+,ω6=ωαε(ω, ω)η+(ω)η-(ω) +η+(ω)P(ω)P(ω)+Xω∈Ohm-,ω6=ωαε(ω, ω)η-(ω)η-(ω) +η+(ω)P(ω)P(ω)≤ 1,Xω∈Ohm-,ω6=ωXω∈Ohm+αε(ω, ω)η+(ω)η-(ω) +η+(ω)P(ω)P(ω)≤ 1,Xω∈Ohm+,ω6=ωXω∈Ohm-αε(ω, ω)η-(ω)η-(ω) +η+(ω)P(ω)P(ω)≤ 1,我们得到ρ(Qε,uω,ω)≤ 4ε.让我们证明引理7的第二部分。
|