英文标题:
《Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data
with Application to Intraday Pairs Trading Strategy》
---
作者:
Vladim\\\'ir Hol\\\'y, Petra Tomanov\\\'a
---
最新提交年份:
2019
---
英文摘要:
When stock prices are observed at high frequencies, more information can be utilized in estimation of parameters of the price process. However, high-frequency data are contaminated by the market microstructure noise which causes significant bias in parameter estimation when not taken into account. We propose an estimator of the Ornstein-Uhlenbeck process based on the maximum likelihood which is robust to the noise and utilizes irregularly spaced data. We also show that the Ornstein-Uhlenbeck process contaminated by the independent Gaussian white noise and observed at discrete equidistant times follows an ARMA(1,1) process. To illustrate benefits of the proposed noise-robust approach, we analyze an intraday pairs trading strategy based on the mean-variance optimization. In an empirical study of 7 Big Oil companies, we show that the use of the proposed estimator of the Ornstein-Uhlenbeck process leads to an increase in profitability of the pairs trading strategy.
---
中文摘要:
当股票价格处于高频时,可以利用更多的信息来估计价格过程的参数。然而,高频数据受到市场微观结构噪声的污染,如果不考虑这些噪声,则会导致参数估计的显著偏差。我们提出了一种基于最大似然的Ornstein-Uhlenbeck过程估计方法,该方法对噪声具有鲁棒性,并利用了不规则间隔的数据。我们还表明,在离散等距时间观测到的受独立高斯白噪声污染的Ornstein-Uhlenbeck过程遵循ARMA(1,1)过程。为了说明所提出的噪声鲁棒性方法的优点,我们分析了一种基于均值-方差优化的日内对交易策略。在对7家大型石油公司的实证研究中,我们表明,使用所提出的Ornstein-Uhlenbeck过程估计量可以提高配对交易策略的盈利能力。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







