《Calibrating rough volatility models: a convolutional neural network
approach》
---
作者:
Henry Stone
---
最新提交年份:
2019
---
英文摘要:
In this paper we use convolutional neural networks to find the H\\\"older exponent of simulated sample paths of the rBergomi model, a recently proposed stock price model used in mathematical finance. We contextualise this as a calibration problem, thereby providing a very practical and useful application.
---
中文摘要:
在本文中,我们使用卷积神经网络来寻找rBergomi模型的模拟样本路径的H?older指数,rBergomi模型是最近提出的一种用于数学金融的股票价格模型。我们将其视为一个校准问题,从而提供了一个非常实际和有用的应用。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->
Calibrating_rough_volatility_models:_a_convolutional_neural_network_approach.pdf
(850.57 KB)


雷达卡



京公网安备 11010802022788号







