《The Effect of Visual Design in Image Classification》
---
作者:
Naftali Cohen, Tucker Balch, and Manuela Veloso
---
最新提交年份:
2019
---
英文摘要:
Financial companies continuously analyze the state of the markets to rethink and adjust their investment strategies. While the analysis is done on the digital form of data, decisions are often made based on graphical representations in white papers or presentation slides. In this study, we examine whether binary decisions are better to be decided based on the numeric or the visual representation of the same data. Using two data sets, a matrix of numerical data with spatial dependencies and financial data describing the state of the S&P index, we compare the results of supervised classification based on the original numerical representation and the visual transformation of the same data. We show that, for these data sets, the visual transformation results in higher predictability skill compared to the original form of the data. We suggest thinking of the visual representation of numeric data, effectively, as a combination of dimensional reduction and feature engineering techniques. In particular, if the visual layout encapsulates the full complexity of the data. In this view, thoughtful visual design can guard against overfitting, or introduce new features -- all of which benefit the learning process, and effectively lead to better recognition of meaningful patterns.
---
中文摘要:
金融公司不断分析市场状况,以重新思考和调整其投资策略。虽然分析是在数字形式的数据上进行的,但决策通常是基于白皮书或演示幻灯片中的图形表示作出的。在这项研究中,我们检验了基于相同数据的数字或视觉表示的二进制决策是否更好。使用两个数据集,一个具有空间相关性的数值数据矩阵和描述标准普尔指数状态的金融数据,我们比较了基于原始数值表示和相同数据的视觉转换的监督分类结果。我们表明,对于这些数据集,与原始形式的数据相比,视觉转换会产生更高的可预测性技能。我们建议将数字数据的可视化表示有效地作为降维和特征工程技术的组合。特别是,如果可视化布局封装了数据的全部复杂性。从这个角度来看,经过深思熟虑的视觉设计可以防止过度搭配,或引入新的功能——所有这些都有利于学习过程,并有效地导致更好地识别有意义的模式。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Human-Computer Interaction 人机交互
分类描述:Covers human factors, user interfaces, and collaborative computing. Roughly includes material in ACM Subject Classes H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia as the primary subject area.
包括人为因素、用户界面和协作计算。大致包括ACM学科课程H.1.2和所有H.5中的材料,除了H.5.1,它更有可能以多媒体作为主要学科领域。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
PDF下载:
-->
The_Effect_of_Visual_Design_in_Image_Classification.pdf
(615.35 KB)


雷达卡



京公网安备 11010802022788号







