《Deep Smoothing of the Implied Volatility Surface》
---
作者:
Damien Ackerer, Natasa Tagasovska, Thibault Vatter
---
最新提交年份:
2020
---
英文摘要:
We present a neural network (NN) approach to fit and predict implied volatility surfaces (IVSs). Atypically to standard NN applications, financial industry practitioners use such models equally to replicate market prices and to value other financial instruments. In other words, low training losses are as important as generalization capabilities. Importantly, IVS models need to generate realistic arbitrage-free option prices, meaning that no portfolio can lead to risk-free profits. We propose an approach guaranteeing the absence of arbitrage opportunities by penalizing the loss using soft constraints. Furthermore, our method can be combined with standard IVS models in quantitative finance, thus providing a NN-based correction when such models fail at replicating observed market prices. This lets practitioners use our approach as a plug-in on top of classical methods. Empirical results show that this approach is particularly useful when only sparse or erroneous data are available. We also quantify the uncertainty of the model predictions in regions with few or no observations. We further explore how deeper NNs improve over shallower ones, as well as other properties of the network architecture. We benchmark our method against standard IVS models. By evaluating our method on both training sets, and testing sets, namely, we highlight both their capacity to reproduce observed prices and predict new ones.
---
中文摘要:
我们提出了一种神经网络(NN)方法来拟合和预测隐含波动率曲面(IVS)。与标准NN应用程序不同,金融业从业人员同样使用此类模型来复制市场价格并对其他金融工具进行估值。换句话说,低训练损失与泛化能力同样重要。重要的是,IVS模型需要生成现实的无套利期权价格,这意味着任何投资组合都不能带来无风险利润。我们提出了一种方法,通过使用软约束惩罚损失,确保没有套利机会。此外,我们的方法可以与定量金融中的标准IVS模型相结合,从而在此类模型无法复制观察到的市场价格时提供基于神经网络的修正。这让实践者可以将我们的方法用作经典方法之上的插件。实证结果表明,当只有稀疏或错误的数据可用时,这种方法特别有用。我们还量化了观测很少或没有观测的区域中模型预测的不确定性。我们进一步探讨了更深层次的NNs如何优于浅层次的NNs,以及网络体系结构的其他特性。我们将我们的方法与标准IVS模型进行比较。通过评估我们在训练集和测试集上的方法,即,我们强调了它们再现观察价格和预测新价格的能力。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->
Deep_Smoothing_of_the_Implied_Volatility_Surface.pdf
(4.63 MB)


雷达卡



京公网安备 11010802022788号







