证明
(1)因为\[\lim_{x,y\to0,0}f(x,y)=\lim_{x,y\to0,0}(x^2+y^2)\sin\frac{1}{x^2+y^2}=0=f(0,0).\]
所以,函数在(0,0)连续。
(2)由于\[\frac{\partial f(0,0)}{\partial x}=\lim_{x\to0}\frac{f(x,0)-f(0,0)}{x-0}=\lim_{x\to0}\frac {x^2\sin\frac{1}{x^2}-0}{x}=0.\]\[\frac{\partial f(0,0)}{\partial y}=\lim_{y\to0}\frac{f(0,y)-f(0,0)}{y-0}=\lim_{y\to0}\frac {y^2\sin\frac{1}{y^2}-0}{y}=0.\]
偏导数存在。
(3)函数的偏导数为\[\frac{\partial f(x,y)}{\partial x}=2x\sin\frac{1}{x^2+y^2}+\frac{2x}{x^2+y^2}\cos\frac{1}{x^2+y^2},\]\[\frac{\partial f(x,y)}{\partial y}=2y\sin\frac{1}{x^2+y^2}+\frac{2y}{x^2+y^2}\cos\frac{1}{x^2+y^2},\]
由于\[\lim_{x\to0}\frac{\partial f(x,y)}{\partial x}=0,\]\[\lim_{y\to0}\frac{\partial f(x,y)}{\partial x}==2x\sin\frac{1}{x^2}+\frac{2}{x}\cos\frac{1}{x^2}\ne 0\ne \frac{\partial f(0,0)}{\partial x},\]
因此,$\frac{\partial f(x,y)}{\partial x}$在$(0,0)$不连续。
同样的,由对称性知$\frac{\partial f(x,y)}{\partial y}$在$(0,0)$也不连续。
(4)因为$\frac{\partial f(0,0)}{\partial x},\frac{\partial f(0,0)}{\partial y}$存在,所以$df(0,0)$存在,且为$0$.\[df(0,0)=\frac{\partial f(0,0)}{\partial x}dx+\frac{\partial f(0,0)}{\partial y}dy=0.\]