1、解
\[\lim_{n\to\infty }(1-\frac{3}{4n^2})^{n^2+4n+3}=\lim_{n\to\infty }(1-\frac{3}{4n^2})^{\frac{-4n^2}{3}\cdotp \frac{-3}{4n^2}(n^2+4n+3)}=e^{-\frac{3}{4}}.\]
2、解
\[f(x)=3xe^{3x}+10-20x^2e^x-x^2e^{2x}.\]
\[f'(x)=3e^{3x}+9xe^{3x}-40xe^x-20x^2e^x-2xe^{2x}-2x^2e^{2x}.\]
3、解
\[\int_{0}^{\frac{\pi }{2}}\frac{\cos\theta }{\cos \theta +\sin \theta }dx=\int_{0}^{\frac{\pi }{2}}\frac{\sin\theta }{\cos \theta +\sin \theta }dx=\frac{1}{2}\int_{0}^{\frac{\pi }{2}}\frac{\cos\theta +\sin \theta }{\cos \theta +\sin \theta }dx=\frac{\pi }{4}.\]
4、解
\[\because \displaystyle\sum_{n=0}^{\infty }\frac{1}{n!}x^n=e^x.\]
\[\therefore e=\displaystyle\sum_{n=0}^{\infty }\frac{1}{n!}1^n=\displaystyle\sum_{n=1}^{\infty }\frac{1}{n!}+1.\]
因此有\[\displaystyle\sum_{n=1}^{\infty }\frac{1}{n!}=e-1.\]


雷达卡
京公网安备 11010802022788号







