解:
\[I=\iint\limits_{D}|x-y|dxdy=\iint\limits_{D_1}(x-y)dxdy+\iint\limits_{D_2}(-x+y)dxdy.\]
其中\[D_1\begin{cases}
x-y> 0\\
(x-\frac{a}{2})^2+y^2\le (\frac{a}{2})^2.
\end{cases}\]\[D_2\begin{cases}
x-y< 0\\
(x-\frac{a}{2})^2+y^2\le (\frac{a}{2})^2.
\end{cases}\]
利用极坐标求解。\[r=a\cos \theta ,J=r.\]
积分区域:\[D_1=\{(\theta ,r),|\frac{\pi}{4}\le \theta\le \frac{\pi}{2},0\le r\le a\cos \theta\},\]\[D_2=\{(\theta ,r),|\frac{-\pi}{2}\le \theta\le \frac{\pi}{4},0\le r\le a\cos \theta\}.\]
如此\[\begin{align*}I&=\iint\limits_{D_1}(x-y)dxdy+\iint\limits_{D_2}(-x+y)dxdy\\
&=\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}}d\theta\int_{0}^{a\cos \theta} (r\cos\theta-r\sin\theta)rdr+\int\limits_{\frac{-\pi}{2}}^{\frac{\pi}{4}}d\theta\int_{0}^{a\cos \theta} (-r\cos\theta+r\sin\theta)rdr\\
&=\cdots
\end{align*}\]


雷达卡
京公网安备 11010802022788号







