一、DCC-GARCH模型简介
动态条件相关系数模型,简称DCC-GARCH模型,由Engle(2002)提出,主要是用来估计多个时间序列之间的动态相关关系。
二、DCC-GARCH模型代码[color=rgba(0, 0, 0, 0.9)]
复制代码
- DATA = read.csv('example.csv')
- DATE = as.Date(as.character(DATA[,1]))
- Y = DATA[,-1]
- NAMES = colnames(Y)
- t = nrow(Y)
- k = ncol(Y)
- #描述性统计
- stats <- descriptive_statistics(Y)
- write.xlsx(stats,
- "descriptive_statistics.xlsx"
- )
- # ADF检验
- adf = ADFTest(Y)
- write.xlsx(adf,
- "adf_test.xlsx"
- , rowNames = TRUE)
- # 自相关检验
- auto = AutoTest(Y)
- write.xlsx(auto,
- "Autocorrelation_test.xlsx"
- , rowNames = TRUE)
- # 利用CA包的描述性统计
- Summary = SummaryStatistics(zoo(Y,order.by = DATE))
- write.xlsx(data.frame(Summary),
- "Summary.xlsx"
- , rowNames = TRUE)
- results = list()
- models = c(
- "sGARCH"
- ,
- "eGARCH"
- ,
- "gjrGARCH"
- ,
- "iGARCH"
- ,
- "csGARCH"
- )
- distribution.models =c(
- "norm"
- ,
- "snorm"
- ,
- "sstd"
- ,
- "ged"
- ,
- "sged"
- ,
- "nig"
- ,
- "ghyp"
- ,
- "jsu"
- )
- distributions = c(
- "mvnorm"
- ,
- "mvlaplace"
- )
- i = 1
- for (model in models ){
- for (distribution.model in distribution.models ){
- for (distribution in distributions){
- print(paste(model,distribution.model,distribution,i))
- a = DCC(Y=Y,k=k,
- armaOrder=c(0,0),
- garchOrder=c(1,1),
- model=model,
- distribution.model=distribution.model,
- dccOrder=c(1,1),
- distribution=distribution,
- testlag=5,
- solver=
- "solnp"
- )
- results[[i]] = a
- i = i + 1
- }
- }
- }
- PlotDCC(NAMES,results[[4]])
- ………(见视频讲解)
![]()
利用2015年1月1日至2022年12月2日的S&P500和上证综合指数的对数收益率数据,通过DCC-GARCH(1,1)分析美国股市与中国股市的动态相关关系,结果如下图所示。结果显示,中国股市与美国股市的动态相关系数均为正数,具有较强的风险联动性。
此视频为DCC-GARCH模型的全流程视频讲解,代码运行平台为R语言,根据视频教程,大家一看就会。
四、获取方式
免费获取。


雷达卡




京公网安备 11010802022788号







