主 编 管典安 倪臣敏主 审 谢志春
线性代数
普通高校应用型人才培养试用教材
大连理工大学出版社
在第1章中,介绍了用克拉默法则求解线性方程组,但是克拉默法则的应用是有条件的,它要求方程的个数等于未知量的个数,且系数行列式不等于零.然而一般线性方程组往往不能同时满足这两个条件.在本章中我们将对一般的线性方程组进行讨论,给出求解一般线性方程组的一种重要方法———矩阵的初等变换法。
消元法是一种求解线性方程组的方法,它不受方程个数和未知量个数的限制.现在我们运用消元法来求解方程组,并总结出线性方程组消元法的结构特点,这对于引入矩阵的初等变换具有重要的意义.下面通过一个例子来加以分析.
引例 求解线性方程组


雷达卡




京公网安备 11010802022788号







