|
因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
因子相关性的检验:方法有相关系数矩阵、反映像相关矩阵、巴特利特球度检验、KMO检验。
因子提取和因子载荷矩阵的求解:基于主成分模型的主成分分析法、基于因子分析模型的主轴因子法、极大似然法、最小二乘法、a因子提取法、映像分析法。主成分分析法能够为因子分析提供初始解,因子分析是主成分分析结果的延伸和拓展。
因子命名、旋转:在因子载荷矩阵中,多行情况,遇到变量与多个因子有较大的相关关系,即变量需要多个因子共同解释;多列情况,一个因子可以同时解释多个变量。说明一个因子不能单独代表原有的一个变量,因子模糊不清,而实际情况是对因子有清醒认识,所以因子旋转。必不可少,尽量使一个变量在较少的几个因子上有比较高的载荷。
计算因子得分:因子得分为因子分析的最终体现,计算各因子在每个样本上的具体数值,即为因子得分,形成的变量称为因子变量,在接下来的分析中因子变量可代替原有的变量进行数据建模,对问题降维或简化处理。
|