楼主: dannin
4388 0

[下载]Chapman07《投资组合优化与绩效分析》(Portfolio Optimization and Performance Analysis)  关闭 [推广有奖]

  • 2关注
  • 17粉丝

VIP

澹宁居士

已卖:12846份资源

教授

57%

还不是VIP/贵宾

-

威望
0
论坛币
398824 个
通用积分
14.2681
学术水平
7 点
热心指数
14 点
信用等级
7 点
经验
22327 点
帖子
363
精华
1
在线时间
2050 小时
注册时间
2006-6-28
最后登录
2025-10-7

楼主
dannin 发表于 2008-4-21 16:18:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Portfolio Optimization and Performance Analysis (Chapman  Financial Mathematics Series)
by Jean-Luc Prigent (Author)

Portfolio Optimization and Performance Analysis (Chapman & Hall/Crc Financial Mathematics Series)

  • Hardcover: 456 pages
  • Publisher: Chapman & Hall/CRC; 1 edition (May 7, 2007)
  • Language: English
  • Book Description
    In answer to the intense development of new financial products and the increasing complexity of portfolio management theory, Portfolio Optimization and Performance Analysis offers a solid grounding in modern portfolio theory. The book presents both standard and novel results on the axiomatics of the individual choice in an uncertain framework, contains a precise overview of standard portfolio optimization, provides a review of the main results for static and dynamic cases, and shows how theoretical results can be applied to practical and operational portfolio optimization. Divided into four sections that mirror the book's aims, this resource first describes the fundamental results of decision theory, including utility maximization and risk measure minimization. Covering both active and passive portfolio management, the second part discusses standard portfolio optimization and performance measures. The book subsequently introduces dynamic portfolio optimization based on stochastic control and martingale theory. It also outlines portfolio optimization with market frictions, such as incompleteness, transaction costs, labor income, and random time horizon. The final section applies theoretical results to practical portfolio optimization, including structured portfolio management. It details portfolio insurance methods as well as performance measures for alternative investments, such as hedge funds. Taking into account the different features of portfolio management theory, this book promotes a thorough understanding for students and professionals in the field.
  • 207197.pdf (3.9 MB, 需要: 30 个论坛币)
  • Contents
    List of Tables XIII
    List of Figures XV
    I Utility and risk analysis 1
    1 Utility theory 5
    1.1 Preferences under uncertainty . . . . . . . . . . . . . . . . . 7
    1.1.1 Lotteries . . . . . . . . . . . . . . . . . . . . . . . . . . 7
    1.1.2 Axioms on pref erences . . . . . . . . . . . . . . . . . . 8
    1.2 Expected utility . . . . . . . . . . . . . . . . . . . . . . . . . 9
    1.3 Risk aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
    1.3.1 Arrow-Pratt measures ofri sk aversion . . . . . . . . . 13
    1.3.2 Standard utility functions . . . . . . . . . . . . . . . . 15
    1.3.3 Applications to portfolio allocation . . . . . . . . . . . 17
    1.4 Stochastic dominance . . . . . . . . . . . . . . . . . . . . . . 19
    1.5 Alternative expected utility theory . . . . . . . . . . . . . . . 24
    1.5.1 Weighted utility theory . . . . . . . . . . . . . . . . . 25
    1.5.2 Rank dependent expected utility theory . . . . . . . . 27
    1.5.3 Non-additive expected utility . . . . . . . . . . . . . . 32
    1.5.4 Regret theory . . . . . . . . . . . . . . . . . . . . . . . 33
    1.6 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 35
    2 Riskmeasures 37
    2.1 Coherent and convex risk measures . . . . . . . . . . . . . . 37
    2.1.1 Coherent riskmeasures . . . . . . . . . . . . . . . . . 38
    2.1.2 Convex riskmeasures . . . . . . . . . . . . . . . . . . 39
    2.1.3 Representation ofri sk measures . . . . . . . . . . . . . 40
    2.1.4 Risk measures and utility . . . . . . . . . . . . . . . . 41
    2.1.5 Dynamic riskmeasures . . . . . . . . . . . . . . . . . 43
    2.2 Standard riskmeasures . . . . . . . . . . . . . . . . . . . . . 48
    2.2.1 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . 48
    2.2.2 CVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
    2.2.3 Spectral measures of risk . . . . . . . . . . . . . . . . 59
    2.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 62
    X Portfolio Optimization and Performance Analysis
    II Standard portfolio optimization 65
    3 Static optimization 67
    3.1 Mean-variance analysis . . . . . . . . . . . . . . . . . . . . . 68
    3.1.1 Diversification effect . . . . . . . . . . . . . . . . . . . 68
    3.1.2 Optimal weights . . . . . . . . . . . . . . . . . . . . . 71
    3.1.3 Additional constraints . . . . . . . . . . . . . . . . . . 78
    3.1.4 Estimation problems . . . . . . . . . . . . . . . . . . . 82
    3.2 Alternative criteria . . . . . . . . . . . . . . . . . . . . . . . 85
    3.2.1 Expected utility maximization . . . . . . . . . . . . . 85
    3.2.2 Risk measure minimization . . . . . . . . . . . . . . . 93
    3.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 100
    4 Indexed funds and benchmarking 103
    4.1 Indexed funds . . . . . . . . . . . . . . . . . . . . . . . . . . 103
    4.1.1 Tracking error . . . . . . . . . . . . . . . . . . . . . . 104
    4.1.2 Simple index tracking methods . . . . . . . . . . . . . 105
    4.1.3 The threshold accepting algorithm . . . . . . . . . . . 106
    4.1.4 Cointegration tracking method . . . . . . . . . . . . . 112
    4.2 Benchmark portf olio optimization . . . . . . . . . . . . . . . 117
    4.2.1 Tracking-error definition . . . . . . . . . . . . . . . . . 118
    4.2.2 Tracking-errorminimization . . . . . . . . . . . . . . . 119
    4.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 127
    5 Portfolio performance 129
    5.1 Standard performance measures . . . . . . . . . . . . . . . . 130
    5.1.1 The Capital Asset Pricing Model . . . . . . . . . . . . 130
    5.1.2 The three standard performance measures . . . . . . . 132
    5.1.3 Other performance measures . . . . . . . . . . . . . . 140
    5.1.4 Beyond the CAPM . . . . . . . . . . . . . . . . . . . . 145
    5.2 Perf ormance decomposition . . . . . . . . . . . . . . . . . . . 151
    5.2.1 The Fama decomposition . . . . . . . . . . . . . . . . 151
    5.2.2 Other performance attributions . . . . . . . . . . . . . 153
    5.2.3 The external attribution . . . . . . . . . . . . . . . . . 153
    5.2.4 The internal attribution . . . . . . . . . . . . . . . . . 155
    5.3 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . 163
    III Dynamic portfolio optimization 165
    6 Dynamic programming optimization 169

    6.1 Control theory . . . . . . . . . . . . . . . . . . . . . . . . . . 169
    6.1.1 Calculus ofv ariations . . . . . . . . . . . . . . . . . . 169
    6.1.2 Pontryagin and Bellman principles . . . . . . . . . . . 175
    6.1.3 Stochastic optimal control . . . . . . . . . . . . . . . . 182
    6.2 Lifetime portfolio selection . . . . . . . . . . . . . . . . . . . 187
    Contents XI
    6.2.1 The optimization problem . . . . . . . . . . . . . . . . 187
    6.2.2 The deterministic coefficients case . . . . . . . . . . . 188
    6.2.3 The general case . . . . . . . . . . . . . . . . . . . . . 195
    6.2.4 Recursive utility in continuous-time . . . . . . . . . . 203
    6.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 205
    7 Optimal payoff profiles and long-term management 207
    7.1 Optimal payoffs as functions of a benchmark . . . . . . . . . 207
    7.1.1 Linear versus option-based strategy . . . . . . . . . . 207
    7.2 Application to long-term management . . . . . . . . . . . . . 214
    7.2.1 Assets dynamics and optimal portfolios . . . . . . . . 214
    7.2.2 Exponential utility . . . . . . . . . . . . . . . . . . . . 220
    7.2.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . 223
    7.2.4 Distribution ofthe optimal portfolio return . . . . . . 225
    7.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 226
    8 Optimization within specific markets 229
    8.1 Optimization in incomplete markets . . . . . . . . . . . . . . 230
    8.1.1 General result based on martingale method . . . . . . 230
    8.1.2 Dynamic programming and viscosity solutions . . . . 238
    8.2 Optimization with constraints . . . . . . . . . . . . . . . . . 242
    8.2.1 General result . . . . . . . . . . . . . . . . . . . . . . . 242
    8.2.2 Basic examples . . . . . . . . . . . . . . . . . . . . . . 249
    8.3 Optimization with transaction costs . . . . . . . . . . . . . . 256
    8.3.1 The infinite-horizon case . . . . . . . . . . . . . . . . . 256
    8.3.2 The finite-horizon case . . . . . . . . . . . . . . . . . . 260
    8.4 Other f rameworks . . . . . . . . . . . . . . . . . . . . . . . . 263
    8.4.1 Labor income . . . . . . . . . . . . . . . . . . . . . . . 263
    8.4.2 Stochastic horizon . . . . . . . . . . . . . . . . . . . . 272
    8.5 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 276
    IV Structured portfolio management 279
    9 Portfolio insurance 281

    9.1 The Option Based Portfolio Insurance . . . . . . . . . . . . . 282
    9.1.1 The standard OBPI method . . . . . . . . . . . . . . . 284
    9.1.2 Extensions oft he OBPI method . . . . . . . . . . . . 286
    9.2 The Constant Proportion Portfolio Insurance . . . . . . . . . 294
    9.2.1 The standard CPPI method . . . . . . . . . . . . . . . 295
    9.2.2 CPPI extensions . . . . . . . . . . . . . . . . . . . . . 303
    9.3 Comparison between OBPI and CPPI . . . . . . . . . . . . . 305
    9.3.1 Comparison at maturity . . . . . . . . . . . . . . . . . 305
    9.3.2 The dynamic behavior ofOBPI and CPPI . . . . . . . 310
    9.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 318
    XII Portfolio Optimization and Performance Analysis
    10 Optimal dynamic portfolio with risk limits 319
    10.1 Optimal insured portfolio: discrete-time case . . . . . . . . . 321
    10.1.1 Optimal insured portfolio with a fixed number of assets 321
    10.1.2 Optimal insured payoffs as functions of a benchmark . 326
    10.2 Optimal Insured Portfolio: the dynamically complete case . . 333
    10.2.1 Guarantee atmaturity . . . . . . . . . . . . . . . . . . 333
    10.2.2 Risk exposure and utility function . . . . . . . . . . . 335
    10.2.3 Optimal portfolio with controlled drawdowns . . . . . 337
    10.3 Value-at-Risk and expected shortfall based management . . . 340
    10.3.1 Dynamic saf ety criteria . . . . . . . . . . . . . . . . . 340
    10.3.2 Expected utility under VaR/CVaR constraints . . . . 347
    10.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 350
    11 Hedge funds 351
    11.1 The hedge funds industry . . . . . . . . . . . . . . . . . . . . 351
    11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 351
    11.1.2 Main strategies . . . . . . . . . . . . . . . . . . . . . . 352
    11.2 Hedge f und perf ormance . . . . . . . . . . . . . . . . . . . . 354
    11.2.1 Return distributions . . . . . . . . . . . . . . . . . . . 354
    11.2.2 Sharpe ratio limits . . . . . . . . . . . . . . . . . . . . 355
    11.2.3 Alternative performance measures . . . . . . . . . . . 362
    11.2.4 Benchmarks for alternative investment . . . . . . . . . 368
    11.2.5 Measure oft he performance persistence . . . . . . . . 369
    11.3 Optimal allocation in hedge funds . . . . . . . . . . . . . . . 370
    11.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 371
    A Appendix A: Arch Models 373
    B Appendix B: Stochastic Processes 381
    References 397
    Symbol Description 431
    Index 433
  • [此贴子已经被作者于2008-4-21 17:19:22编辑过]

    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    关键词:Optimization performance Performan Portfolio Portfoli Analysis Optimization Portfolio performance 绩效

    独立之精神,自由之思想。

    您需要登录后才可以回帖 登录 | 我要注册

    本版微信群
    加好友,备注jr
    拉您进交流群
    GMT+8, 2025-12-9 03:55