楼主: Lisrelchen
1458 0

[精彩WinBUGS答问]Inferring multiple ratios and binomial proportions [推广有奖]

  • 0关注
  • 62粉丝

VIP

已卖:4194份资源

院士

67%

还不是VIP/贵宾

-

TA的文库  其他...

Bayesian NewOccidental

Spatial Data Analysis

东西方数据挖掘

威望
0
论坛币
50288 个
通用积分
83.6306
学术水平
253 点
热心指数
300 点
信用等级
208 点
经验
41518 点
帖子
3256
精华
14
在线时间
766 小时
注册时间
2006-5-4
最后登录
2022-11-6

楼主
Lisrelchen 发表于 2014-6-16 11:55:39 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

I have a number of studies describing families tested for a genetic condition. For each study the following data are described:

  • np, number of probands (the proband is the first person in a family to be diagnosed with the genetic condition, so this is generally equal to the number of families)
  • nr, number of relatives identified (this is the total number of people identified across families minus the number of probands)
  • nc, number of relatives given genetic counseling
  • nt, number of relatives given genetic testing

Relatives must be identified before they can be given genetic counseling, and they must be given genetic counseling before they can be given genetic testing.

If I assume that nr~r×np, nc~pc×nr and nt~pt×nc how can I infer r, pc and pt given that some values of np, nr, nc and nt are missing (not reported)?



model {
  # Where all four variables are observed
  for (i in 1:N_PRCT) {
    # N_{r,i} | N_{p,i} = n_{p,i} ~ Poisson(r * n_{p,i})
    lam[Q_PRCT] <- r * N_p[Q_PRCT]
    N_r[Q_PRCT] ~ dpois(lam[Q_PRCT])
    # N_{c,i} | N_{r,i} = n_{r,i} ~ Bin(p_c, n_{r,i})
    N_c[Q_PRCT] ~ dbin(p_c, N_r[Q_PRCT])
    # N_{t,i} | N_{c,i} = n_{c,i} ~ Bin(p_t, n_{c,i})
    N_t[Q_PRCT] ~ dbin(p_t, N_c[Q_PRCT])
  }


  # Where the number being counseled is not observed
  for (i in 1:N_PRT) {
    # N_{r,i} | N_{p,i} = n_{p,i} ~ Poisson(r * n_{p,i})
    lam[Q_PRT] <- r * N_p[Q_PRT]
    N_r[Q_PRT] ~ dpois(lam[Q_PRT])
    # N_{t,i} | N_{r,i} = n_{r,i} ~ Bin(p_c * p_t, n_{r,i})
    N_t[Q_PRT] ~ dbin(p_cp_t, N_r[Q_PRT])
  }


  # Where only the number of probands and the number of
  # relatives tested are observed
  for (i in 1:N_PT) {
    # N_{t,i} | N_{p,i} = n_{p,i} ~ Poisson(r * p_c * p_t * n_{p,i})
    lam[Q_PT] <- rp_cp_t * N_p[Q_PT]
    N_t[Q_PT] ~ dpois(lam[Q_PT])
  }
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:proportions Proportion inferring Binomial Multiple identified following multiple families person

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-31 05:25