楼主: dingfu294
16167 45

[教材书籍] 【下载】Bootstrap Methods 权威著作 [推广有奖]

  • 0关注
  • 32粉丝

已卖:3832份资源

副教授

69%

还不是VIP/贵宾

-

威望
0
论坛币
6754 个
通用积分
311.8913
学术水平
28 点
热心指数
13 点
信用等级
27 点
经验
2282 点
帖子
327
精华
2
在线时间
1277 小时
注册时间
2005-12-12
最后登录
2025-10-17

楼主
dingfu294 发表于 2008-4-30 23:54:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
<p>Bootstrap 方法经典著作</p><p>Chernick 著</p><p>388页 英文版 非影印、清晰版</p><p>Contents<br/>Preface to Second Edition  ix<br/>Preface to First Edition  xiii<br/>Acknowledgments xvii<br/>1. What Is Bootstrapping? 1<br/> 1.1. Background, 1<br/> 1.2. Introduction, 8<br/>  1.3.  Wide Range of Applications,  13<br/> 1.4. Historical Notes, 16<br/> 1.5. Summary, 24<br/>2. Estimation 26<br/> 2.1. Estimating Bias, 26<br/>    2.1.1.  How to Do It by Bootstrapping,  26<br/>    2.1.2.  Error Rate Estimation in Discrimination,  28<br/>    2.1.3.  Error Rate Estimation: An Illustrative Problem,  39<br/>    2.1.4.  Efron’s Patch Data Example,  44<br/>  2.2.  Estimating Location and Dispersion,  46<br/>   2.2.1. Means and Medians, 47<br/>    2.2.2.  Standard Errors and Quartiles,  48<br/> 2.3. Historical Notes, 51<br/>3. Confi  dence Sets and Hypothesis Testing 53<br/> 3.1. Confi  dence Sets,  55<br/>    3.1.1.  Typical Value Theorems for M-Estimates,  55<br/>   3.1.2. Percentile Method, 57vi contents<br/>    3.1.3.  Bias Correction and the Acceleration Constant,  58<br/>   3.1.4. Iterated Bootstrap, 61<br/>   3.1.5. Bootstrap Percentile t Confi  dence Intervals,  64<br/>  3.2.   Relationship Between Confi  dence Intervals and Tests of <br/>Hypotheses, 64<br/> 3.3. Hypothesis Testing Problems, 66<br/>    3.3.1.  Tendril DX Lead Clinical Trial Analysis,  67<br/>  3.4.   An Application of Bootstrap Confi  dence Intervals to Binary <br/>Dose–Response Modeling,  71<br/> 3.5.  Historical Notes, 75<br/>4. Regression Analysis 78<br/> 4.1.  Linear Models, 82<br/>   4.1.1.  Gauss–Markov Theory, 83<br/>    4.1.2.   Why Not Just Use Least Squares?  83<br/>    4.1.3.   Should I Bootstrap the Residuals from the Fit?  84<br/> 4.2.  Nonlinear Models, 86<br/>    4.2.1.   Examples of Nonlinear Models,  87<br/>    4.2.2.   A Quasi-optical Experiment,  89<br/> 4.3.  Nonparametric Models, 93<br/> 4.4.  Historical Notes, 94<br/>5. Forecasting and Time Series Analysis 97<br/>  5.1.   Methods of Forecasting,  97<br/>  5.2.   Time Series Models,  98<br/>  5.3.   When Does Bootstrapping Help with Prediction Intervals?  99<br/>  5.4.   Model-Based Versus Block Resampling,  103<br/>  5.5.   Explosive Autoregressive Processes,  107<br/>  5.6.   Bootstrapping-Stationary Arma Models,  108<br/> 5.7.  Frequency-Based Approaches, 108<br/> 5.8.  Sieve Bootstrap, 110<br/> 5.9.  Historical Notes, 111<br/>6. Which Resampling Method Should You Use? 114<br/> 6.1.  Related Methods, 115<br/>   6.1.1.  Jackknife, 115<br/>    6.1.2.   Delta Method, Infi  nitesimal Jackknife, and Infl  uence <br/>Functions, 116<br/>   6.1.3.  Cross-Validation, 119<br/>   6.1.4.  Subsampling, 119contents vii<br/> 6.2.  Bootstrap Variants, 120<br/>   6.2.1.  Bayesian Bootstrap, 121<br/>    6.2.2.   The Smoothed Boostrap,  123<br/>    6.2.3.   The Parametric Bootstrap,  124<br/>   6.2.4.  Double Bootstrap, 125<br/>    6.2.5.   The m-out-of-n Bootstrap,  125<br/>7. Effi  cient and Effective Simulation 127<br/>  7.1.   How Many Replications?  128<br/>  7.2.   Variance Reduction Methods,  129<br/>   7.2.1.  Linear Approximation, 129<br/>   7.2.2.  Balanced Resampling, 131<br/>   7.2.3.  Antithetic Variates, 132<br/>   7.2.4.  Importance Sampling, 133<br/>   7.2.5.  Centering, 134<br/>  7.3.   When Can Monte Carlo Be Avoided?  135<br/> 7.4.  Historical Notes, 136<br/>8. Special Topics 1 3 9<br/> 8.1.  Spatial Data, 139<br/>   8.1.1.  Kriging, 139<br/>    8.1.2.   Block Bootstrap on Regular Grids,  142<br/>    8.1.3.   Block Bootstrap on Irregular Grids,  143<br/> 8.2.  Subset Selection, 143<br/>  8.3.   Determining the Number of Distributions in a Mixture <br/>Model, 145<br/> 8.4.  Censored Data, 148<br/> 8.5.   p-Value Adjustment,  149<br/>    8.5.1.   Description of Westfall–Young Approach,  150<br/>    8.5.2.   Passive Plus DX Example,  150<br/>   8.5.3.  Consulting Example, 152<br/> 8.6.  Bioequivalence Applications, 153<br/>   8.6.1.  Individual Bioequivalence, 153<br/>   8.6.2.  Population Bioequivalence, 155<br/>  8.7.   Process Capability Indices,  156<br/> 8.8.  Missing Data, 164<br/> 8.9.  Point Processes, 166<br/> 8.10.  Lattice Variables, 168<br/> 8.11.  Historical Notes, 169viii contents<br/>9. When Bootstrapping Fails Along with Remedies for Failures 172<br/>  9.1.   Too Small of a Sample Size,  173<br/>  9.2.   Distributions with Infi  nite Moments,  175<br/>   9.2.1.  Introduction, 175<br/>    9.2.2.   Example of Inconsistency,  176<br/>   9.2.3.  Remedies, 176<br/>  9.3.   Estimating Extreme Values,  177<br/>   9.3.1.  Introduction, 177<br/>   9.3.2. Example of Inconsistency, 177<br/>   9.3.3. Remedies, 178<br/> 9.4.  Survey Sampling, 179<br/>   9.4.1.  Introduction, 179<br/>   9.4.2. Example of Inconsistency, 180<br/>   9.4.3. Remedies, 180<br/>  9.5.   Data Sequences that Are M-Dependent, 180<br/>   9.5.1.  Introduction, 180<br/>   9.5.2.   Example of Inconsistency When Independence Is <br/>Assumed, 181<br/>   9.5.3. Remedies, 181<br/>  9.6.   Unstable Autoregressive Processes,  182<br/>   9.6.1.  Introduction, 182<br/>    9.6.2.   Example of Inconsistency,  182<br/>   9.6.3.  Remedies, 183<br/> 9.7.  Long-Range Dependence, 183<br/>   9.7.1.  Introduction, 183<br/>    9.7.2.   Example of Inconsistency,  183<br/>   9.7.3.  Remedies, 184<br/> 9.8.  Bootstrap Diagnostics, 184<br/> 9.9.  Historical Notes, 185<br/>Bibliography 1 (Prior to 1999) 188<br/>Bibliography 2 (1999–2007) 274<br/>Author Index 330<br/>Subject Index </p><p> 209453.pdf (4.9 MB, 需要: 7 个论坛币) </p><br/>

[此贴子已经被作者于2008-5-1 0:02:51编辑过]

<br>mathtao
 金钱 +100
 奖励 2009-1-18 1:00:38
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Bootstrap Bootstra Methods Method boots 英文版 Error 经典

已有 1 人评分经验 论坛币 学术水平 收起 理由
Pandanash + 20 + 20 + 1 根据规定进行奖励

总评分: 经验 + 20  论坛币 + 20  学术水平 + 1   查看全部评分

沙发
dingfu294(未真实交易用户) 发表于 2008-5-1 00:06:00

Bootstrap 方法经典著作

Chernick 著

388页 英文版 非影印、清晰版

Contents
Preface to Second Edition  ix
Preface to First Edition  xiii
Acknowledgments xvii
1. What Is Bootstrapping? 1
 1.1. Background, 1
 1.2. Introduction, 8
  1.3.  Wide Range of Applications,  13
 1.4. Historical Notes, 16
 1.5. Summary, 24
2. Estimation 26
 2.1. Estimating Bias, 26
    2.1.1.  How to Do It by Bootstrapping,  26
    2.1.2.  Error Rate Estimation in Discrimination,  28
    2.1.3.  Error Rate Estimation: An Illustrative Problem,  39
    2.1.4.  Efron’s Patch Data Example,  44
  2.2.  Estimating Location and Dispersion,  46
   2.2.1. Means and Medians, 47
    2.2.2.  Standard Errors and Quartiles,  48
 2.3. Historical Notes, 51
3. Confi  dence Sets and Hypothesis Testing 53
 3.1. Confi  dence Sets,  55
    3.1.1.  Typical Value Theorems for M-Estimates,  55
   3.1.2. Percentile Method, 57vi contents
    3.1.3.  Bias Correction and the Acceleration Constant,  58
   3.1.4. Iterated Bootstrap, 61
   3.1.5. Bootstrap Percentile t Confi  dence Intervals,  64
  3.2.   Relationship Between Confi  dence Intervals and Tests of
Hypotheses, 64
 3.3. Hypothesis Testing Problems, 66
    3.3.1.  Tendril DX Lead Clinical Trial Analysis,  67
  3.4.   An Application of Bootstrap Confi  dence Intervals to Binary
Dose–Response Modeling,  71
 3.5.  Historical Notes, 75
4. Regression Analysis 78
 4.1.  Linear Models, 82
   4.1.1.  Gauss–Markov Theory, 83
    4.1.2.   Why Not Just Use Least Squares?  83
    4.1.3.   Should I Bootstrap the Residuals from the Fit?  84
 4.2.  Nonlinear Models, 86
    4.2.1.   Examples of Nonlinear Models,  87
    4.2.2.   A Quasi-optical Experiment,  89
 4.3.  Nonparametric Models, 93
 4.4.  Historical Notes, 94
5. Forecasting and Time Series Analysis 97
  5.1.   Methods of Forecasting,  97
  5.2.   Time Series Models,  98
  5.3.   When Does Bootstrapping Help with Prediction Intervals?  99
  5.4.   Model-Based Versus Block Resampling,  103
  5.5.   Explosive Autoregressive Processes,  107
  5.6.   Bootstrapping-Stationary Arma Models,  108
 5.7.  Frequency-Based Approaches, 108
 5.8.  Sieve Bootstrap, 110
 5.9.  Historical Notes, 111
6. Which Resampling Method Should You Use? 114
 6.1.  Related Methods, 115
   6.1.1.  Jackknife, 115
    6.1.2.   Delta Method, Infi  nitesimal Jackknife, and Infl  uence
Functions, 116
   6.1.3.  Cross-Validation, 119
   6.1.4.  Subsampling, 119contents vii
 6.2.  Bootstrap Variants, 120
   6.2.1.  Bayesian Bootstrap, 121
    6.2.2.   The Smoothed Boostrap,  123
    6.2.3.   The Parametric Bootstrap,  124
   6.2.4.  Double Bootstrap, 125
    6.2.5.   The m-out-of-n Bootstrap,  125
7. Effi  cient and Effective Simulation 127
  7.1.   How Many Replications?  128
  7.2.   Variance Reduction Methods,  129
   7.2.1.  Linear Approximation, 129
   7.2.2.  Balanced Resampling, 131
   7.2.3.  Antithetic Variates, 132
   7.2.4.  Importance Sampling, 133
   7.2.5.  Centering, 134
  7.3.   When Can Monte Carlo Be Avoided?  135
 7.4.  Historical Notes, 136
8. Special Topics 1 3 9
 8.1.  Spatial Data, 139
   8.1.1.  Kriging, 139
    8.1.2.   Block Bootstrap on Regular Grids,  142
    8.1.3.   Block Bootstrap on Irregular Grids,  143
 8.2.  Subset Selection, 143
  8.3.   Determining the Number of Distributions in a Mixture
Model, 145
 8.4.  Censored Data, 148
 8.5.   p-Value Adjustment,  149
    8.5.1.   Description of Westfall–Young Approach,  150
    8.5.2.   Passive Plus DX Example,  150
   8.5.3.  Consulting Example, 152
 8.6.  Bioequivalence Applications, 153
   8.6.1.  Individual Bioequivalence, 153
   8.6.2.  Population Bioequivalence, 155
  8.7.   Process Capability Indices,  156
 8.8.  Missing Data, 164
 8.9.  Point Processes, 166
 8.10.  Lattice Variables, 168
 8.11.  Historical Notes, 169viii contents
9. When Bootstrapping Fails Along with Remedies for Failures 172
  9.1.   Too Small of a Sample Size,  173
  9.2.   Distributions with Infi  nite Moments,  175
   9.2.1.  Introduction, 175
    9.2.2.   Example of Inconsistency,  176
   9.2.3.  Remedies, 176
  9.3.   Estimating Extreme Values,  177
   9.3.1.  Introduction, 177
   9.3.2. Example of Inconsistency, 177
   9.3.3. Remedies, 178
 9.4.  Survey Sampling, 179
   9.4.1.  Introduction, 179
   9.4.2. Example of Inconsistency, 180
   9.4.3. Remedies, 180
  9.5.   Data Sequences that Are M-Dependent, 180
   9.5.1.  Introduction, 180
   9.5.2.   Example of Inconsistency When Independence Is
Assumed, 181
   9.5.3. Remedies, 181
  9.6.   Unstable Autoregressive Processes,  182
   9.6.1.  Introduction, 182
    9.6.2.   Example of Inconsistency,  182
   9.6.3.  Remedies, 183
 9.7.  Long-Range Dependence, 183
   9.7.1.  Introduction, 183
    9.7.2.   Example of Inconsistency,  183
   9.7.3.  Remedies, 184
 9.8.  Bootstrap Diagnostics, 184
 9.9.  Historical Notes, 185
Bibliography 1 (Prior to 1999) 188
Bibliography 2 (1999–2007) 274
Author Index 330
Subject Index

藤椅
dingfu295(真实交易用户) 发表于 2008-5-1 00:06:00

Bootstrap 方法经典著作

[此贴子已经被作者于2008-5-1 0:07:33编辑过]

板凳
强功(未真实交易用户) 发表于 2008-5-1 00:18:00
好书,一定得顶~~~谢谢楼主

报纸
catch007(真实交易用户) 发表于 2008-6-7 01:12:00
碰到好书,一定要顶啊

地板
zst112all(未真实交易用户) 发表于 2008-6-7 09:11:00

很好的书,楼主的目录很详细!赞

不要笑话我,俺就是瘪四!

7
smilehu(未真实交易用户) 发表于 2008-6-8 22:24:00
好书可惜没钱
知我者谓我心忧,不知我者谓我何求

8
alantin(真实交易用户) 发表于 2008-6-9 01:13:00
Ding

9
robinhq(真实交易用户) 发表于 2008-6-24 17:26:00
bootstrap 的书也读过几本了,这本不知道为什么比图书馆的厚呢?所以偶就买了瞅瞅

10
xiaobei_2000(未真实交易用户) 发表于 2008-6-25 09:07:00
请问大家一般将bootstrap都用在什么地方?

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 18:41