Dependent Variable: D(LOG_FINDEP)
Method: Least Squares
Date: 07/20/14 Time: 08:12
Sample (adjusted): 1973Q3 2012Q4
Included observations: 158 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
C 0.001913 0.000736 2.600743 0.0102
D(LOG_GDP) -0.437467 0.164646 -2.657017 0.0087
D(LOG_DEPRAT)-0.001616 0.006681 -0.241802 0.8093
D(EI,2) 0.068975 0.023036 2.994219 0.0032
D(LOG_FINDEP(-1)) -0.047685 0.078326 -0.608800 0.5436
R-squared 0.096488 Mean dependent var 0.000609
Adjusted R-squared 0.072866 S.D. dependent var 0.006986
S.E. of regression 0.006726 Akaike info criterion -7.134415
Sum squared resid 0.006922 Schwarz criterion -7.037497
Log likelihood 568.6188 Hannan-Quinn criter. -7.095055
F-statistic 4.084778 Durbin-Watson stat 2.011326
Prob(F-statistic) 0.003567
2. 小弟先对上述不平稳序列进行协整检测(没有差分过,协整结果如下图:)
Date: 07/19/14 Time: 23:20 |
|
| ||
Sample (adjusted): 1974Q2 2012Q4 |
|
| ||
Included observations: 155 after adjustments |
| |||
Trend assumption: Linear deterministic trend |
| |||
Series: EI LOG_DEPRAT LOG_FINDEP LOG_GDP |
| |||
Lags interval (in first differences): 1 to 4 |
| |||
|
|
|
|
|
Unrestricted Cointegration Rank Test (Trace) |
| |||
|
|
|
|
|
|
|
|
|
|
Hypothesized |
| Trace | 0.05 |
|
No. of CE(s) | Eigenvalue | Statistic | Critical Value | Prob.** |
|
|
|
|
|
|
|
|
|
|
None * | 0.169011 | 52.35287 | 47.85613 | 0.0178 |
At most 1 | 0.103964 | 23.65646 | 29.79707 | 0.2153 |
At most 2 | 0.030515 | 6.641328 | 15.49471 | 0.6197 |
At most 3 | 0.011787 | 1.837829 | 3.841466 | 0.1752 |
|
|
|
|
|
|
|
|
|
|
Trace test indicates 1 cointegrating eqn(s) at the 0.05 level | ||||
* denotes rejection of the hypothesis at the 0.05 level | ||||
**MacKinnon-Haug-Michelis (1999) p-values |
| |||
|
|
|
|
|
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) | ||||
|
|
|
|
|
|
|
|
|
|
Hypothesized |
| Max-Eigen | 0.05 |
|
No. of CE(s) | Eigenvalue | Statistic | Critical Value | Prob.** |
|
|
|
|
|
|
|
|
|
|
None * | 0.169011 | 28.69642 | 27.58434 | 0.0359 |
At most 1 | 0.103964 | 17.01513 | 21.13162 | 0.1713 |
At most 2 | 0.030515 | 4.803500 | 14.26460 | 0.7664 |
At most 3 | 0.011787 | 1.837829 | 3.841466 | 0.1752 |
|
|
|
|
|
|
|
|
|
|
Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level | ||||
* denotes rejection of the hypothesis at the 0.05 level | ||||
**MacKinnon-Haug-Michelis (1999) p-values |
| |||
|
|
|
|
|
| ||||
| ||||
|
|
|
|
|
发现在5%水平下,有一个协整关系,这是否可以说明这4个变量之间存在长期稳定的关系,于是我对这4个变量进行了OLS回归,结果如下图:
Dependent Variable: LOG_FINDEP
Method: Least Squares
Date: 07/20/14 Time: 07:53
Sample (adjusted): 1973Q2 2012Q4
Included observations: 159 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
C -0.504214 0.197929 -2.547444 0.0118
LOG_GDP 0.039107 0.016105 2.428318 0.0163
LOG_DEPRAT 0.005858 0.002175 2.693007 0.0079
EI -0.003525 0.002262 -1.558234 0.1212
LOG_FINDEP(-1)1.009472 0.015885 63.54705 0.0000
R-squared 0.973732 Mean dependent var 1.855539
Adjusted R-squared 0.973049 S.D. dependent var 0.041476
S.E. of regression 0.006809 Akaike info criterion -7.110229
Sum squared resid 0.007140 Schwarz criterion -7.013723
Log likelihood 570.2632 Hannan-Quinn criter. -7.071039
F-statistic 1427.144 Durbin-Watson stat 2.176872
Prob(F-statistic) 0.000000
结果我发现这个数据才是我真正想要的。
所以,当我们抓取的经济序列不平稳时,于是对它做协整测试发现因变量之间有稳定关系,那么这个时候我们是否还需要对时间序列做平稳性检测呢? 如果在这个情况下不做平稳性检测,那么回归出来的结果是否是伪回归呢?
望大神给予小弟点意见,小弟论文这儿被卡住了。
谢谢了。


雷达卡


京公网安备 11010802022788号







