楼主: zjlfrm
4126 2

[CFA] 求copula的解释及应用实例,谢谢。 [推广有奖]

  • 0关注
  • 0粉丝

已卖:104份资源

小学生

0%

还不是VIP/贵宾

-

威望
0
论坛币
93 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
84 点
帖子
4
精华
0
在线时间
0 小时
注册时间
2009-1-4
最后登录
2009-2-20

楼主
zjlfrm 发表于 2009-1-20 16:12:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
2.2.2 Copulas<br/>&nbsp; When the two variables are independent, the joint density is simply the product<br/>of the marginal densities. It is rarely the case, however, that financial variables are<br/>independent. Dependencies can be modeled by a function called the copula, which<br/>links, or attaches, marginal distributions into a joint distribution. Formally, the<br/>copula is a function of the marginal distributions F (x), plus some parameters, θ,<br/>that are specific to this function (and not to the marginals). In the bivariate case,<br/>it has two arguments:<br/>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; c12[F1(x1), F2(x2); θ] (2.20)<br/>The link between the joint and marginal distribution is made explicit by Sklar’s<br/>theorem, which states that, for any joint density, there exists a copula that links<br/>the marginal densities<br/>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; f12(x1, x2) = f1(x1) × f2(x2) × c12[F1(x1), F2(x2); θ] (2.21)<br/>With independence, the copula function is a constant always equal to one.<br/>Thus the copula contains all the information on the nature of the dependence<br/>between the random variables but gives no information on the marginal distributions.<br/>Complex dependencies can be modeled with different copulas. Copulas are<br/>now used extensively for modeling financial instruments such as collateralized debt<br/>obligations (CDOs). As we shall see in a later chapter, CDOs involve movements<br/>in many random variables, which are the default events for the companies issuing<br/>the debt.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Copula opula 应用实例 distribution independence 解释 Copula 实例 应用

沙发
Windwill 发表于 2009-1-24 11:40:00
<p>Copula 就是在知道几个变量的Marginal distribution之后,构造这些变量的Joint distribution的一种简单方法。我们知道以前一般使用Correlation Matrix的方法,但这种方法隐含的假设是Linear dependence,也就是分布的任何两点之间相关性都是一样的。这显然不符合实际情况。Copula可以对于分布的不同位置构造不同的dependence</p><p>具体的Excel例子可以在下面的网址找到</p><p><font color="#008000"><a href="http://www.soa.org/files/xls/rsrch-copula-ex.xls">www.soa.org/files/xls/rsrch-<b>copula</b>-<b>ex</b>.xls</a></font></p><p>希望可以解决你的问题。</p>

藤椅
luling2010 发表于 2009-10-19 18:19:16
刚发现的新方法,试试看

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-19 12:02