楼主: oliyiyi
1034 0

Can’t compute the standard deviation in your head? Divide the range by four. [推广有奖]

版主

已卖:2994份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

计量文库

威望
7
论坛币
84105 个
通用积分
31671.0967
学术水平
1454 点
热心指数
1573 点
信用等级
1364 点
经验
384134 点
帖子
9629
精华
66
在线时间
5508 小时
注册时间
2007-5-21
最后登录
2025-7-8

初级学术勋章 初级热心勋章 初级信用勋章 中级信用勋章 中级学术勋章 中级热心勋章 高级热心勋章 高级学术勋章 高级信用勋章 特级热心勋章 特级学术勋章 特级信用勋章

楼主
oliyiyi 发表于 2016-6-19 07:19:29 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
This article was first published on R – Decision Science News, and kindly contributed to R-bloggers)

TESTING A HEURISTIC TO ESTIMATE STANDARD DEVIATION


[color=rgb(255, 255, 255) !important]


Click to enlarge

Say you’ve got 30 numbers and a strong urge to estimate their standard deviation. But you’ve left your computer at home. Unless you’re really good at mentally squaring and summing, it’s pretty hard to compute a standard deviation in your head. But there’s a heuristic you can use:

Subtract the smallest number from the largest number and divide by four

Let’s call it the “range over four” heuristic. You could, and probably should, be skeptical. You could want to see how accurate the heuristic is. And you could want to see how the heuristic’s accuracy depends on the distribution of numbers you are dealing with.

Fine.

We generated  random numbers from four distributions, pictured above. We nickname them (from top to bottom): floor, left of center, normalish, and uniform. They’re all beta distributions. If you want more detail, they’re the same beta distributions studied in Goldstein and Rothschild (2014). See the code below for parameters.

We vary two things in our simulation:
1) The number of observations on which we’re estimating the standard deviation.
2) The distributions from which the observations are drawn

With each sample, we compute the actual standard deviation and compare it to the heuristic’s estimate of the standard deviation. We do this many times and take the average. Because we like the way mape sounds, we used mean absolute percent error (MAPE) as our error metric. Enough messing around. Let’s show the result.


Click to enlarge

There you have it. With about 30 to 40 observations, we could get an average absolute error of less than 10 percent for three of our distributions, even the skewed ones. With more observations, the error grew for those distributions.

With the uniform distribution, error was over 15 percent in the 30-40 observation range. We’re fine with that. We don’t tend to measure too many things that are uniformly distributed.

Another thing that set the uniform distribution apart is that its error continued to go down as more observations were added. Why is this? The standard deviation of a uniform distribution between 0 and 1 is 1/sqrt(12) or 0.289. The heuristic, if it were lucky enough to draw 1 and a 0 as its sample range, would estimate the standard deviation as 1/4 or .25. So, the sample size increases, the error for the uniform distribution should drop down to a MAPE of 13.4% and flatten out. The graph shows it is well on its way towards doing so.

Want to play with it yourself? R Code below. Thanks to Hadley Wickham for creating tools like dplyr and ggplot2 which take R to the next level.


The post Can’t compute the standard deviation in your head? Divide the range by four. appeared first onDecision Science News.











二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Deviation Standard compute Comput divide standard

缺少币币的网友请访问有奖回帖集合
https://bbs.pinggu.org/thread-3990750-1-1.html

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-24 06:14