楼主: cmwei333
7718 19

[学科前沿] 【Final Release 版本,2016】Introduction to Machine Learning with Python (PDF) [推广有奖]

贵宾

已卖:205125份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

【历史+心理学+社会自然科学】

【数学+统计+计算机编程】

【金融+经济+商学+国际政治】

威望
6
论坛币
3606580 个
通用积分
1126.3201
学术水平
4327 点
热心指数
4650 点
信用等级
3957 点
经验
363248 点
帖子
9795
精华
9
在线时间
2842 小时
注册时间
2015-2-9
最后登录
2017-1-29

初级热心勋章 中级热心勋章 高级热心勋章 初级信用勋章 中级信用勋章 初级学术勋章 特级热心勋章 中级学术勋章 高级信用勋章 高级学术勋章 特级学术勋章 特级信用勋章

楼主
cmwei333 发表于 2016-9-30 19:00:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Introduction to Machine Learning with Python
A Guide for Data Scientists
By Andreas C. Müller, Sarah Guido
Publisher: O'Reilly Media
Final Release Date: September 2016
Pages: 392

cover.jpg

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.

You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.

With this book, you’ll learn:
Fundamental concepts and applications of machine learning
Advantages and shortcomings of widely used machine learning algorithms
How to represent data processed by machine learning, including which data aspects to focus on
Advanced methods for model evaluation and parameter tuning
The concept of pipelines for chaining models and encapsulating your workflow
Methods for working with text data, including text-specific processing techniques
Suggestions for improving your machine learning and data science skills

Table of Contents

Chapter 1 Introduction
Why Machine Learning?
Why Python?
scikit-learn
Essential Libraries and Tools
Python 2 Versus Python 3
Versions Used in this Book
A First Application: Classifying Iris Species
Summary and Outlook

Chapter 2 Supervised Learning
Classification and Regression
Generalization, Overfitting, and Underfitting
Supervised Machine Learning Algorithms
Uncertainty Estimates from Classifiers
Summary and Outlook

Chapter 3 Unsupervised Learning and Preprocessing
Types of Unsupervised Learning
Challenges in Unsupervised Learning
Preprocessing and Scaling
Dimensionality Reduction, Feature Extraction, and Manifold Learning
Clustering
Summary and Outlook

Chapter 4 Representing Data and Engineering Features
Categorical Variables
Binning, Discretization, Linear Models, and Trees
Interactions and Polynomials
Univariate Nonlinear Transformations
Automatic Feature Selection
Utilizing Expert Knowledge
Summary and Outlook

Chapter 5 Model Evaluation and Improvement
Cross-Validation
Grid Search
Evaluation Metrics and Scoring
Summary and Outlook

Chapter 6 Algorithm Chains and Pipelines
Parameter Selection with Preprocessing
Building Pipelines
Using Pipelines in Grid Searches
The General Pipeline Interface
Grid-Searching Preprocessing Steps and Model Parameters
Grid-Searching Which Model To Use
Summary and Outlook

Chapter 7 Working with Text Data
Types of Data Represented as Strings
Example Application: Sentiment Analysis of Movie Reviews
Representing Text Data as a Bag of Words
Stopwords
Rescaling the Data with tf–idf
Investigating Model Coefficients
Bag-of-Words with More Than One Word (n-Grams)
Advanced Tokenization, Stemming, and Lemmatization
Topic Modeling and Document Clustering
Summary and Outlook

Chapter 8 Wrapping Up
Approaching a Machine Learning Problem
From Prototype to Production
Testing Production Systems
Building Your Own Estimator
Where to Go from Here
Conclusion

本帖隐藏的内容

Introduction to Machine Learning with Python_A Guide for Data Scientists.pdf (31.62 MB, 需要: 20 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction troduction Learning Release earning commercial companies extensive practical learning

已有 1 人评分经验 收起 理由
Nicolle + 100 精彩帖子

总评分: 经验 + 100   查看全部评分

本帖被以下文库推荐

bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259

沙发
jjxm20060807(未真实交易用户) 发表于 2016-9-30 19:11:05
谢谢分享

藤椅
hjtoh(未真实交易用户) 发表于 2016-9-30 20:53:41 来自手机
cmwei333 发表于 2016-9-30 19:00
Introduction to Machine Learning with Python
A Guide for Data Scientists
By Andreas C. Müller, Sa ...
楼主很良心

板凳
bullstag(真实交易用户) 发表于 2016-10-4 03:03:32
the book is great

报纸
东风吹客梦(未真实交易用户) 发表于 2016-10-4 03:11:27 来自手机
cmwei333 发表于 2016-9-30 19:00
Introduction to Machine Learning with Python
A Guide for Data Scientists
By Andreas C. Müller, Sa ...
多谢分享

地板
haiferry(未真实交易用户) 发表于 2016-10-10 13:55:57
thank you very much

7
icandoit9(真实交易用户) 发表于 2016-10-28 11:50:23

谢谢分享

8
minix2011(未真实交易用户) 发表于 2016-10-28 14:42:44 来自手机
谢谢啦

9
qingxunz(真实交易用户) 发表于 2016-10-29 05:03:07
thanks

10
bison0927(真实交易用户) 发表于 2016-10-29 06:57:03
thanks..................

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-1 21:27