大神们好,我问一下,我的问题是一个因变量y,三个自变量,用reg做回归时,都显著,但是用固定效应模型做回归时其中一个不显著,但是这个变量又是我关注的,用随机效应模型也一样,最后用豪斯曼检验得出得用固定效应模型。然后我就采取对y,x(1,2,3)进行取对数,再用固定效应模型回归,那个原先不显著的还是不显著,但是我对y值取对数,对因变量不取对数情况下,原先不显著的自变量在0.05水平下不显著,但是在0.1水平下显著,所以想请教大神们一下。
代码及结果如下:
encode province,gen(provin)
.
. xtset provin year
panel variable: provin (strongly balanced)
time variable: year, 2005 to 2014
delta: 1 unit
. xtreg ce cs tis es, fe
Fixed-effects (within) regression Number of obs = 300
Group variable: provin Number of groups = 30
R-sq: within = 0.7108 Obs per group: min = 10
between = 0.0435 avg = 10.0
overall = 0.0778 max = 10
F(3,267) = 218.73
corr(u_i, Xb) = -0.3896 Prob > F = 0.0000
------------------------------------------------------------------------------
ce | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cs | 1.21e+09 7.47e+07 16.24 0.000 1.07e+09 1.36e+09
tis | 1.17e+08 1.14e+08 1.03 0.304 -1.07e+08 3.41e+08
es | 4.36e+08 3.55e+07 12.26 0.000 3.66e+08 5.06e+08
_cons | -6.15e+08 5.32e+07 -11.56 0.000 -7.19e+08 -5.10e+08
-------------+----------------------------------------------------------------
sigma_u | 2.661e+08
sigma_e | 43558580
rho | .97389498 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(29, 267) = 198.20 Prob > F = 0.0000
. xtreg ce cs tis es, re
Random-effects GLS regression Number of obs = 300
Group variable: provin Number of groups = 30
R-sq: within = 0.7085 Obs per group: min = 10
between = 0.0730 avg = 10.0
overall = 0.1124 max = 10
Random effects u_i ~ Gaussian Wald chi2(3) = 611.21
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
ce | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cs | 1.14e+09 7.45e+07 15.26 0.000 9.91e+08 1.28e+09
tis | 4.75e+07 1.16e+08 0.41 0.681 -1.79e+08 2.74e+08
es | 4.65e+08 3.55e+07 13.09 0.000 3.95e+08 5.34e+08
_cons | -5.66e+08 6.55e+07 -8.64 0.000 -6.95e+08 -4.38e+08
-------------+----------------------------------------------------------------
sigma_u | 1.999e+08
sigma_e | 43558580
rho | .95468299 (fraction of variance due to u_i)
------------------------------------------------------------------------------
. gen lnce=log(ce)
. xtreg lnce cs tis es, fe
Fixed-effects (within) regression Number of obs = 300
Group variable: provin Number of groups = 30
R-sq: within = 0.7683 Obs per group: min = 10
between = 0.0330 avg = 10.0
overall = 0.0598 max = 10
F(3,267) = 295.10
corr(u_i, Xb) = -0.3420 Prob > F = 0.0000
------------------------------------------------------------------------------
lnce | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cs | 4.177678 .1989736 21.00 0.000 3.785921 4.569435
tis | -.5035035 .3030574 -1.66 0.098 -1.10019 .0931827
es | 1.144738 .094668 12.09 0.000 .9583471 1.331129
_cons | 16.63639 .1416278 117.47 0.000 16.35754 16.91524
-------------+----------------------------------------------------------------
sigma_u | .94466292
sigma_e | .1160233
rho | .98513947 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(29, 267) = 344.65 Prob > F = 0.0000
. xtreg lnce cs tis es, re
Random-effects GLS regression Number of obs = 300
Group variable: provin Number of groups = 30
R-sq: within = 0.7670 Obs per group: min = 10
between = 0.0516 avg = 10.0
overall = 0.0823 max = 10
Random effects u_i ~ Gaussian Wald chi2(3) = 821.78
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
lnce | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cs | 4.012193 .201918 19.87 0.000 3.616441 4.407945
tis | -.6397415 .3107922 -2.06 0.040 -1.248883 -.0305998
es | 1.217173 .0961572 12.66 0.000 1.028708 1.405637
_cons | 16.72949 .1965021 85.14 0.000 16.34435 17.11462
-------------+----------------------------------------------------------------
sigma_u | .70361277
sigma_e | .1160233
rho | .97352891 (fraction of variance due to u_i)
------------------------------------------------------------------------------


雷达卡






京公网安备 11010802022788号







