SMM Lie Algebras And Algebraic Groups (2005) Tauvel Yu
Preface
The theory of groups and Lie algebras is interesting for many reasons. In
the mathematical viewpoint, it employs at the same time algebra, analysis
and geometry. On the other hand, it intervenes in other areas of science, in
particular in different branches of physics and chemistry. It is an active domain
of current research.
One of the difficulties that graduate students or mathematicians interested
in the theory come across, is the fact that the theory has very much advanced,
and consequently, they need to read a vast amount of books and articles before
they could tackle interesting problems.
One of the goals we wish to achieve with this book is to assemble in
a single volume the basis of the algebraic aspects of the theory of groups
and Lie algebras. More precisely, we have presented the foundation of the
study of finite-dimensional Lie algebras over an algebraically closed field of
characteristic zero.
Here, the geometrical aspect is fundamental, and consequently, we need to
use the notion of algebraic groups. One of the main differences between this
book and many other books on the subject is that we give complete proofs
for the relationships between algebraic groups and Lie algebras, instead of
admitting them.
We have also given the proofs of certain results on commutative algebra
and algebraic geometry that we needed so as to make this book as selfcontained
as possible. We believe that in this way, the book can be useful for
both graduate students and mathematicians working in this area.
Let us give a brief description of the material treated in this book.
As we have stated earlier, our goal is to study Lie algebras over an algebraically
closed field of characteristic zero. This allows us to avoid, in considering
questions concerning algebraic geometry, the notion of separability, which
simplifies considerably our presentation. In fact, under certain conditions of
separability, the correspondence between Lie algebras and algebraic groups
described in chapter 24 has a very nice generalization when the algebraically
closed base field has prime characteristic.
Contents
1 Results on topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Irreducible sets and spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Noetherian spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Constructible sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Gluing topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Rings and modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Prime and maximal ideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Rings of fractions and localization. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Localizations of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
24 Factorial rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Unique factorization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Principal ideal domains and Euclidean domains . . . . . . . . . . . . . 43
4.4 Polynomials and factorial rings . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Symmetric polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Resultant and discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
16.5 Smooth points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
17 Normal varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
17.1 Normal varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
17.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
17.3 Products of normal varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
17.4 Properties of normal varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
18 Root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
18.1 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
18.2 Root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
18.3 Root systems and bilinear forms . . . . . . . . . . . . . . . . . . . . . . . . . . 238
18.4 Passage to the field of real numbers . . . . . . . . . . . . . . . . . . . . . . . 239
18.5 Relations between two roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
18.6 Examples of root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
18.7 Base of a root system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
18.8 Weyl chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
18.9 Highest root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
18.10 Closed subsets of roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
18.11Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
20 Semisimple and reductive Lie algebras . . . . . . . . . . . . . . . . . . . . . 299
20.1 Semisimple Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
20.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
20.3 Semisimplicity of representations . . . . . . . . . . . . . . . . . . . . . . . . . . 302
20.4 Semisimple and nilpotent elements . . . . . . . . . . . . . . . . . . . . . . . . 305
20.5 Reductive Lie algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
38 Semisimple symmetric Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . 561
38.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
38.2 Iwasawa decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
38.7 Symmetric invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
38.8 Double centralizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
38.9 Normalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
38.10 Distinguished elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
39 Sheets of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
39.1 Jordan classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
39.2 Topology of Jordan classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
39.3 Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
39.4 Dixmier sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
39.5 Jordan classes in the symmetric case . . . . . . . . . . . . . . . . . . . . . . 605
39.6 Sheets in the symmetric case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
40 Index and linear forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
40.1 Stable linear forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
40.2 Index of a representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
40.3 Some useful inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
40.4 Index and semi-direct products . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
40.5 Heisenberg algebras in semisimple Lie algebras . . . . . . . . . . . . . 621
40.6 Index of Lie subalgebras of Borel subalgebras . . . . . . . . . . . . . . . 625
40.7 Seaweed Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
40.8 An upper bound for the index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
40.9 Cases where the bound is exact . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
40.10 On the index of parabolic subalgebras . . . . . . . . . . . . . . . . . . . . . 638
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
List of notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647


雷达卡




京公网安备 11010802022788号







