|
好的老师,我这里想看的是Lindexstd这个指标,从描述性统计中可以看出,这个指标每年都是一样的
year = 2006
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 1272 .0431823 0 .0431823 .0431823
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2007
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 1356 .0767929 0 .0767929 .0767929
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2008
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 1472 .1177339 0 .1177339 .1177339
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2009
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 1527 .1136617 0 .1136617 .1136617
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2010
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 1681 .1095555 0 .1095555 .1095555
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2011
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 2032 .0828158 0 .0828158 .0828158
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2012
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 2267 .0455032 0 .0455032 .0455032
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2013
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 2396 .075343 0 .075343 .075343
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2014
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 2444 .0639406 0 .0639406 .0639406
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2015
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 2561 .0836936 0 .0836936 .0836936
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-> year = 2016
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
Lindexstd | 2753 .0981514 0 .0981514 .0981514
如果我加入了年度控制效应,那么它的结果是正向三星显著的,意味着股市波动率越大股权融资的倾向性越高(Lindexstd的系数)(不好意思我之前记反了)
logit Dumkgpr Dumunkgpr house LROA Ldratio Lcashratio SOE Lgudingratio index Lms4 LDEFTR LTobinQ lnasset Lwrbeta Lindexstd LSPF RSPF i.inum i.year if REG==1 | BLANK,r
Logistic regression Number of obs = 6527
Wald chi2(31) = 1641.51
Prob > chi2 = 0.0000
Log pseudolikelihood = -2678.5285 Pseudo R2 = 0.3185
------------------------------------------------------------------------------
| Robust
Dumkgpr | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Dumunkgpr | .8938565 .0893011 10.01 0.000 .7188294 1.068883
house | .0002037 .0000266 7.67 0.000 .0001517 .0002558
LROA | -5.598056 .8929477 -6.27 0.000 -7.348201 -3.84791
Ldratio | .9305108 .2546877 3.65 0.000 .4313321 1.42969
Lcashratio | -.8860265 .3004339 -2.95 0.003 -1.474866 -.2971869
SOE | -2.588042 .081919 -31.59 0.000 -2.7486 -2.427484
Lgudingratio | -1.212069 .2669868 -4.54 0.000 -1.735353 -.6887841
index | -.4075597 .0304129 -13.40 0.000 -.467168 -.3479514
Lms4 | 4.250714 2.059316 2.06 0.039 .2145292 8.2869
LDEFTR | .5450976 .2536589 2.15 0.032 .0479353 1.04226
LTobinQ | .0998076 .0319718 3.12 0.002 .037144 .1624711
lnasset | -.1983141 .0396118 -5.01 0.000 -.2759518 -.1206765
Lwrbeta | .2496814 .1845499 1.35 0.176 -.1120297 .6113925
Lindexstd | 116.5474 45.11493 2.58 0.010 28.12374 204.971
LSPF | -.0013647 .000514 -2.66 0.008 -.0023721 -.0003573
RSPF | -32.60733 13.0819 -2.49 0.013 -58.24737 -6.967284
|
inum |
15 | .9262792 .2219147 4.17 0.000 .4913343 1.361224
20 | .0730956 .2183922 0.33 0.738 -.3549451 .5011364
25 | .0808999 .2251016 0.36 0.719 -.3602911 .5220908
30 | -.0318842 .2483474 -0.13 0.898 -.5186361 .4548678
35 | .466829 .2502302 1.87 0.062 -.0236132 .9572712
45 | .3268446 .2275369 1.44 0.151 -.1191195 .7728086
50 | .7633341 .7334691 1.04 0.298 -.6742388 2.200907
55 | .3466449 .2941428 1.18 0.239 -.2298645 .9231542
60 | .4100973 .2662384 1.54 0.123 -.1117204 .9319149
|
year |
2007 | -1.502348 .4127214 -3.64 0.000 -2.311267 -.6934292
2008 | -11.0849 4.04951 -2.74 0.006 -19.02179 -3.148006
2009 | -2.226631 .7531162 -2.96 0.003 -3.702712 -.7505504
2010 | -5.819056 2.075864 -2.80 0.005 -9.887675 -1.750436
2011 | -2.430611 .8280761 -2.94 0.003 -4.053611 -.807612
2012 | 2.990958 1.237575 2.42 0.016 .5653547 5.416561
2013 | 0 (omitted)
2014 | 0 (omitted)
2015 | 0 (omitted)
|
_cons | 8.174596 1.014999 8.05 0.000 6.185234 10.16396
------------------------------------------------------------------------------
如果我去掉了年度控制效应,那么它的结果是负向显著的
logit Dumkgpr Dumunkgpr house LROA Ldratio Lcashratio SOE Lgudingratio index Lms4 LDEFTR LTobinQ lnasset Lwrbeta Lindexstd LSPF RSPF i.inum if REG==1 | BLANK,r
Logistic regression Number of obs = 6527
Wald chi2(25) = 1652.44
Prob > chi2 = 0.0000
Log pseudolikelihood = -2688.7529 Pseudo R2 = 0.3159
------------------------------------------------------------------------------
| Robust
Dumkgpr | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Dumunkgpr | .9071929 .0886703 10.23 0.000 .7334023 1.080983
house | .0002063 .0000266 7.75 0.000 .0001541 .0002584
LROA | -5.968127 .8861422 -6.73 0.000 -7.704934 -4.231321
Ldratio | .8434465 .2519465 3.35 0.001 .3496404 1.337253
Lcashratio | -1.03514 .2980978 -3.47 0.001 -1.619401 -.4508791
SOE | -2.579206 .0814505 -31.67 0.000 -2.738846 -2.419566
Lgudingratio | -1.260447 .265729 -4.74 0.000 -1.781267 -.7396281
index | -.404441 .030379 -13.31 0.000 -.4639827 -.3448993
Lms4 | 4.049982 2.043736 1.98 0.048 .0443341 8.055631
LDEFTR | .4483864 .24979 1.80 0.073 -.0411929 .9379657
LTobinQ | .0938605 .0308074 3.05 0.002 .0334792 .1542418
lnasset | -.1949604 .039089 -4.99 0.000 -.2715734 -.1183475
Lwrbeta | -.0193156 .1577377 -0.12 0.903 -.3284759 .2898446
Lindexstd | -4.888389 1.789244 -2.73 0.006 -8.395243 -1.381534
LSPF | .0000782 .0000524 1.49 0.135 -.0000245 .0001809
RSPF | .9290176 .736579 1.26 0.207 -.5146508 2.372686
|
inum |
15 | .9001321 .2220312 4.05 0.000 .4649589 1.335305
20 | .041229 .2184522 0.19 0.850 -.3869295 .4693875
25 | .0360354 .2249794 0.16 0.873 -.4049162 .476987
30 | -.0805831 .2484559 -0.32 0.746 -.5675477 .4063814
35 | .4096469 .2498319 1.64 0.101 -.0800147 .8993085
45 | .3006556 .2275483 1.32 0.186 -.1453309 .7466421
50 | .6684948 .7369246 0.91 0.364 -.775851 2.112841
55 | .2993323 .291692 1.03 0.305 -.2723735 .8710382
60 | .3694888 .2671523 1.38 0.167 -.1541201 .8930977
|
_cons | 6.764971 .8954761 7.55 0.000 5.00987 8.520071
------------------------------------------------------------------------------
|