楼主: DL-er
772 0

基于RBF神经网络和小波包的电动机故障诊断研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-9-21 22:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对传统的电动机故障诊断存在很难准确提取故障时的特征信号及对故障作出准确预测的问题,提出了一种基于RBF神经网络和小波包的电动机故障诊断的方法。该方法采用小波包分析技术提取电动机典型轴承故障、转子故障和绝缘故障振动信号的特征频段能量并组成向量作为RBF神经网络的输入,用于诊断电动机的故障。实验和仿真结果表明,使用RBF神经网络对电动机故障诊断是非常有效的,对电动机早期故障的发现及维修有积极意义。

原文链接:http://www.cqvip.com/QK/71135X/201107/36532850.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:故障诊断 神经网络 神经网 电动机 RBF 电动机 故障诊断 RBF神经网络 小波包分析 振动信号

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 08:51