楼主: a智多星
619 0

基于FMM和CRFs双层分词模型的研究 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1485
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-2 12:00:05 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:中文分词是众多自然语言处理任务的基本工作。该文提出了一个用双层模型进行中文分词的方法。首先在低层利用前向最大匹配算法(FMM)进行粗分词,并将切分结果传至高层;在高层利用CRFs对文本重新进行标注,其中低层的识别结果作为CRFs的一项特征,最后将对每个字的标注结果转换为相应的分词结果。,跟以前单独利用CRF进行分词的模型相比.低层模型的加入对CRFs模型的标注起到了重要的辅助作用。在北京大学标注的1998年1月份的人民日报语料上进行了大量的实验,取得了精确率93.31%,召回车92.75%的切分结果,证明该方法是切实可行的。

原文链接:http://www.cqvip.com//QK/87339A/200810/28565117.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:FMM RFS cqvip 中文分词 HTTP 前向最大匹配算法 条件随机场 双层模型 召回率

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-10 18:06