楼主: AIworld
656 0

基于多类型文本的半监督性别分类方法研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-3 03:19:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:提出一种基于多种文本类型的半监督性别分类方法,即根据微博平台中用户所产生的不同类型的文本(如:原创微博、转发微博等)对用户的进行性别分类。文中的方法是一种基于协同训练(Co-training)的半监督学习方法,旨在减少分类器对大量标注样本的依赖。首先将不同类型的文本分为不同的独立视图;其次,在每个视图中利用LSTM分类器挑选置信度最高的未标注样本;最后,将挑选出来的未标注样本加入训练模型迭代训练。实验结果表明我们的方法能够有效利用非标注样本信息,并明显优于其他现有的半监督性别分类方法。

原文链接:http://www.cqvip.com//QK/92718X/201701/671215535.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:方法研究 Training cqvip Train 大家共享 性别分类 半监督学习方法 文本分类 LSTM

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 21:42