楼主: AIworld
575 0

支持向量机训练算法比较研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-7 13:20:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:论文介绍了一种年轻的机器学习方法——支持向量机,详细论述了目前主要的支持向量机的训练算法,包括:二次规划算法。分解算法和增量算法。通过实验验证了普通二次规划算法的缺陷,比较了三种典型的SVM分解训练算法的性能。说明了其相对于二次规划算法的优点和对SVM训练问题的适用性,指出了训练速度优劣的原因。最后指出了未来支持向量机训练算法研究的方向。

原文链接:http://www.cqvip.com//QK/91690X/200517/15759853.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 比较研究 向量机 cqvip 二次规划 支持向量机 训练算法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 03:09