楼主: a智多星
419 0

一种基于支持向量机的图像边缘检测方法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-10 09:00:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机是一种新的机器学习的方法.它以统计学习理论为基础,能够较好地解决小样本的学习问题.由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点.支持向量函数回归(SVR)是SVM的一个重要分支,它已经成功地应用于系统识别、非线性系统的预测等方面,并取得了较好的效果.文中通过图像的SVR表示,对SVR图像的边缘检测进行了研究.文中算例说明了该方法在实际应用中的可行性.实验结果表明,该算法能有效提高图像边缘检测效果.同时对其他边缘检测方法有一定的借鉴作用.

原文链接:http://www.cqvip.com//QK/97969X/200501/11386193.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 非线性系统 cqvip 学习的方法 支持向量机 支持向量函数回归 边缘检测

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 17:12