楼主: DL-er
513 0

基于数据密集性的自适应K均值初始化方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-11 05:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:K均值聚类算法在数据挖掘、机器学习领域被广泛应用。但其初始聚类中心的选取对整个聚类效果会产生很大的影响,因此,如何合理地初始化K均值聚类算法成为重要的研究方向。提出一种基于数据内在密集性的自适应初始聚类中心选取方法。该方法分为两个过程,第一个过程给出数据密集性的定义,并基于数据密集性选出满足条件的候选初始聚类中心,第二个过程是对选出的候选初始中心进行后处理,使其个数与数据类一致。实验证明,提出的方法有如下优势:1)能够自主发现数据集中数据分布的密集性,并能够合理找出初始聚类中心;2)对离群点和噪声鲁棒;3)减少了K均值聚类算法的迭代步骤;4)易于实现。

原文链接:http://www.cqvip.com//QK/90976X/201402/48562934.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:cqvip 聚类算法 研究方向 学术交流 数据分布 聚类 K均值 初始化 初始聚类中心选取

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 08:07